搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

条纹水电极介质阻挡放电中D2h超点阵斑图研究

李骋 闫志浩 齐晓秀 李雨昕 潘宇扬 董丽芳

引用本文:
Citation:

条纹水电极介质阻挡放电中D2h超点阵斑图研究

李骋, 闫志浩, 齐晓秀, 李雨昕, 潘宇扬, 董丽芳

Study on D2h superlattice patterns in dielectric barrier discharge with striped water electrode

CHENG Li, ZHIHAO Yan, XIAOXIU Qi, YUXIN Li, YUYANG Pan, LIFANG Dong
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本工作设计了一种特殊的完全条纹水电极介质阻挡放电装置,通过求解拉普拉斯方程发现其产生了条纹状非均匀电场.采用该装置,在空气和氩气的混合气体放电中,观测到了多种具有D2h对称性的条纹斑图,其中四种条纹超点阵斑图为首次获得.选取其中结构最复杂的大小点蜂窝条纹超点阵斑图进行研究,该斑图由小点、大点和蜂窝框架三套放电丝子结构嵌套构成.实验中,利用光谱仪测量了不同子结构的发射光谱,发现其处于不同的等离子体状态;采用高速照相机和光电倍增管对其时空动力学进行测量,发现放电顺序为小点→大点→蜂窝框架,其中蜂窝框架由随机放电丝叠加而成.理论上,通过求解泊松方程模拟了不同时刻的电场分布,很好地解释了上述斑图的形成机制.
    In this work, a special striped water electrodes dielectric barrier discharge device is designed. Through numerical solutions to the Laplace equation, the spatial distribution of the applied electric field is revealed to exhibit a strip-shaped nonuniform distribution, characterized by alternating regions of enhanced and weakened field intensity. These field gradients play a pivotal role in governing the plasma, as the intensified regions act as preferential sites for discharge onset, directly shaping the formation and evolution of plasma structures. Using this device, a series of novel striped patterns are observed in the discharge of a mixed gas of air and argon, marking a significant advancement in pattern formation studies. Notably, four striped superlattice patterns are obtained for the first time, each displaying intricate structural hierarchies. Among these, the large and small dots honeycomb striped superlattice pattern characterized by structural complexity is selected to investigate the formation mechanisms. The pattern is composed of three substructures: small dots, large dots, and a honeycomb framework. In the experiment, the emission spectra of different substructures are measured using a spectrograph, revealing that they are in different plasma states. The spatiotemporal dynamics of the pattern is measured using a high-speed camera and two photomultiplier tubes. It is found that the discharge sequence is small dots→large dots→ honeycomb framework, where the honeycomb framework is formed by the superposition of random discharge filaments. Theoretically, the electric field distributions at different times are simulated by solving the Poisson equation, which well explains the formation mechanism of the abovementioned pattern.
  • [1]

    Kogelschatz, U 2010 J. Phys. Conf. Ser. 257 012015.

    [2]

    Joron M, Jiggins C D, Papanicolaou A, McMillan W O 2006 Heredity 97 157

    [3]

    Werner T, Koshikawa S, Williams T M, Carroll S B 2010 Nature 464 1143

    [4]

    Rogers J L, Schatz M F, Brausch O, Pesch W 2000 Phys. Rev. Lett. 85 4281

    [5]

    Perkins A C, Grigoriev R O, Schatz M F 2011 Phys. Rev. Lett. 107 064501

    [6]

    Cominotti R, Berti A, Farolfi A, Zenesini A, Lamporesi G, Carusotto I, Recati A, Ferrari G 2022 Phys. Rev. Lett. 128 210401

    [7]

    Frumkin V, Gokhale S 2023 Phy. Rev. E 108 L012601

    [8]

    Bánsági T, Vanag V K, Epstein I R 2011 Science 331 1309

    [9]

    Kameke A V, Huhn F, Muñuzuri A P, Muñuzuri V P 2013 Phys. Rev. Lett. 110 088302

    [10]

    Dong L F, He Y F, Yin Z Q, Chai Z F 2004 Plasma Sources Sci. Technol. 13 164.

    [11]

    Guikema J, Miller N, Niehof J, Klein M, Walhout M 2000 Phys. Rev. Lett. 85 3817

    [12]

    Zhang B, Zhang X B, Wu S Q 2024 J. Appl. Phys. 136 12

    [13]

    Peng B F, Wang R Z, Li J, Jiang N, Yuan D K, Chen Z Q, Lei Z P, Kang A L and Song J C 2024 Appl. Phys. Lett. 125 144102

    [14]

    Peng B F, Jiang N, Zhu Y F, Li J and Wu Y 2024 Plasma Sources Sci. Technol. 33 045018

    [15]

    Peng B F, Li J, Jiang N, Jiang Y, Chen Z Q, Lei Z P and Song J C 2024 Phys. Fluids 36 037144

    [16]

    Liu Q J, You M, Wang J M, Chen Y Y, Guo Z H, Zhu S S and Wu S Q 2024 IEEE Trans. Plasma Sci. 52 8

    [17]

    Li J F, Yao J F, Wang Ying, Zhou Z X, Lan Z H, Yuan C X 2024 Adv. Opt. Mater. 12 17

    [18]

    Wang R G, Li B, Zhang T K, Ouyang J T and Sun Y R 2020 Plasma Sci. Technol. 22 085002

    [19]

    Zhang L and Ouyang J T 2014 Phys. Plasmas 21 103514

    [20]

    Liu F C, Liu Y N, Liu Q, Wu Z C, Liu Y H, Gao K Y, He Y F, Fan W L Dong L F 2022 Plasma Sources Sci. Technol. 31 025015

    [21]

    Dong L F, Li Y H, Yan Z H, He Y N, Li C and Pan Y Y 2025 Chaos Soliton Fractals 200 117023

    [22]

    Dong L F, Li Y H, Qi X X, Fan W L, Li R, Liu S and Pan Y Y 2025 Opt. Express 33 37246

    [23]

    Dong L F, Zhang L J, He Y N, Wei T, Li Y H, Li C, Pan Y Y 2024 Appl. Phys. Lett. 125 104101

    [24]

    Ongrak P, Poolyarat N, Suksaengpanomrung S, Saidarasamoot K, Jirakiattikul Y, Rithichai P 2023 Horticulturae 9 1269

    [25]

    Kim S J, Kim S, Son B K, Lee K H, Park B J, Cho G 2020 J. Korean Phys. Soc. 77 572

    [26]

    Fan W L, Hou X H, Tian M, Gao K Y, He Y F, Yang Y X, Liu Q, Yao J F, Liu F C, Yuan C X 2022 Plasma Sci. Technol. 24 015402

    [27]

    Yao J X, Miao J S, Li J X, Lian X Y, Ouyang J T 2023 Appl. Phys. Lett. 122 082905

    [28]

    Ouyang J T, Duan X X, Xu S W, He F 2012 Chin. Phys. Lett. 29 025201

    [29]

    Duan X X, Ouyang J T, Zhao X F, He F 2009 Phys. Rev. E 80 016202

    [30]

    Dong L F, Xiao H, Fan W L, Zhao H T, Yue H 2010 IEEE Trans. Plasma Sci. 38 2486

    [31]

    Dong L F, Li B, Lu N, Li X C, Shen Z K, 2012 Phys. Plasmas 19 052304

    [32]

    Dong L F, Li B, Shen Z K, Wang Y J, Lu N, 2012 Phys. Rev. E 86 036211

    [33]

    Dong L F, Liu B B, Li C X, Pan Y Y 2019 Phys. Rev. E 100 063201

    [34]

    Dong L F, Liu W B, Wang Y J, Zhang X P 2014 IEEE Trans. Plasma Sci. 42 2

    [35]

    Li C X, Feng J Y, Wang S C, Li C, Ran J X, Pan Y Y, Dong L F 2024 Plasma Sci. Technol. 26 085401

    [36]

    Dong L F, Mi Y L, Pan Y Y 2020 Phys. Plasmas 27 023504

    [37]

    Sinclair J, Walhout M 2012 Phys. Rev. Lett. 108 035005

    [38]

    Liu W B, Wang Y J, Zhang H, Pan Y Y, Dong L F 2016 Rev. Sci. Instrum. 87 056101

    [39]

    Chu J H, Dong L F, Tian M, Li Y H, He Y N, Zhang J H, Pan Y Y 2024 Sci. China- Phys. Mech. Astron. 54 245212 (in Chinese) [褚佳惠, 董丽芳, 田淼, 李耀华, 贺玉楠, 张建华, 潘宇扬 2024 中国科学: 物理学、力学、天文学 54 245212]

    [40]

    Dong L F, Qi Y Y, Liu W Y, Fan W L 2009 J. Appl. Phys. 106 013301

    [41]

    Dong L F, Qi Y Y, Zhao Z C, Li Y H 2008 Plasma Sources Sci. Technol. 17 015015

    [42]

    Dong L F, Ran J X, Mao Z G 2005 Appl. Phys. Lett. 86 161501

    [43]

    Li Y H, Pan Y Y, Tian M, Wang Y, He Y N, Zhang J H, Chu J H, Dong L F 2023 Phys. Plasmas 30 033502

    [44]

    Feng J Y, Pan Y Y, Li C X, Liu B B and Dong L F 2020 Phys. Plasmas 27 063516

    [45]

    Wang Y F, Wang L, Guo D, Fan X L, Harati J, Huang H, Chen P F, Chen X G, Guo T L, Weng J and Deng K 2025 Chem. Eng. Sci. 311 121537

    [46]

    Polonskyi O, Hartig T, Uzarski J R, Gordon M J 2021 Appl. Phys. Lett. 119 211601

  • [1] 田爽, 张寒, 张喜, 张雪雪, 李雪辰, 李庆, 冉俊霞. 双气隙下介质阻挡放电斑图的放电特性与参数诊断. 物理学报, doi: 10.7498/aps.74.20250111
    [2] 李耀华, 燕兆赫, 闫志浩, 李骋, 潘宇扬, 董丽芳. 介质阻挡放电中类蜂窝超点阵斑图研究. 物理学报, doi: 10.7498/aps.74.20250952
    [3] 张鑫, 黄勇, 王万波, 唐坤, 李华星. 对称式布局介质阻挡放电等离子体激励器诱导启动涡. 物理学报, doi: 10.7498/aps.65.174701
    [4] 赵光银, 李应红, 梁华, 化为卓, 韩孟虎. 纳秒脉冲表面介质阻挡等离子体激励唯象学仿真. 物理学报, doi: 10.7498/aps.64.015101
    [5] 刘伟波, 董丽芳. 介质阻挡放电中同心圆环斑图的产生机理. 物理学报, doi: 10.7498/aps.64.245202
    [6] 胡文勇, 邵元智. 局域浓度调控扩散系数的次氯酸-碘离子-丙二酸系统图灵斑图形成中的反常扩散. 物理学报, doi: 10.7498/aps.63.238202
    [7] 赵凯, 牟宗信, 张家良. 同轴介质阻挡放电发生器介质层等效电容和负载特性研究. 物理学报, doi: 10.7498/aps.63.185208
    [8] 程钰锋, 聂万胜, 车学科, 田希晖, 侯志勇, 周鹏辉. 不同压力下介质阻挡放电等离子体诱导流场演化的实验研究. 物理学报, doi: 10.7498/aps.62.104702
    [9] 贺亚峰, 冯晓敏, 张亮. 气体放电系统中时空斑图的时滞反馈控制. 物理学报, doi: 10.7498/aps.61.245204
    [10] 陈俊英, 董丽芳, 李媛媛, 宋倩, 嵇亚飞. 大气压介质阻挡放电超四边形斑图的等离子体参量. 物理学报, doi: 10.7498/aps.61.075211
    [11] 董丽芳, 岳晗, 范伟丽, 李媛媛, 杨玉杰, 肖红. 介质阻挡放电跃变升压模式下靶波斑图研究. 物理学报, doi: 10.7498/aps.60.065206
    [12] 董丽芳, 谢伟霞, 赵海涛, 范伟丽, 贺亚峰, 肖红. 氩气/空气介质阻挡放电自组织超六边形斑图实验研究. 物理学报, doi: 10.7498/aps.58.4806
    [13] 李 钢, 徐燕骥, 穆克进, 聂超群, 朱俊强, 张 翼, 李汉明. 平面激光诱导荧光技术在交错电极介质阻挡放电等离子体研究中的初步应用. 物理学报, doi: 10.7498/aps.57.6444
    [14] 董丽芳, 赵海涛, 谢伟霞, 王红芳, 刘微粒, 范伟丽, 肖 红. 介质阻挡放电系统中超四边形斑图形成的实验研究. 物理学报, doi: 10.7498/aps.57.5768
    [15] 董丽芳, 刘书华, 王红芳, 范伟丽, 高瑞玲, 郝雅娟. 介质阻挡放电中两种不同时空对称性的六边形发光斑图. 物理学报, doi: 10.7498/aps.56.3332
    [16] 范伟丽, 董丽芳, 李雪辰, 尹增谦, 贺亚峰, 刘书华. Air/Ar介质阻挡放电中正方形斑图的特性研究. 物理学报, doi: 10.7498/aps.56.1467
    [17] 董丽芳, 高瑞玲, 贺亚峰, 范伟丽, 李雪辰, 刘书华, 刘微粒. 介质阻挡放电斑图中放电通道的相互作用研究. 物理学报, doi: 10.7498/aps.56.1471
    [18] 董丽芳, 李树锋, 刘 峰, 刘富成, 刘书华, 范伟丽. 大气压氩气介质阻挡放电中的四边形斑图和六边形斑图. 物理学报, doi: 10.7498/aps.55.362
    [19] 王艳辉, 王德真. 大气压下多脉冲均匀介质阻挡放电的研究. 物理学报, doi: 10.7498/aps.54.1295
    [20] 董丽芳, 李雪辰, 尹增谦, 王龙. 大气压介质阻挡放电中的自组织斑图结构. 物理学报, doi: 10.7498/aps.51.2296
计量
  • 文章访问数:  89
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-26

/

返回文章
返回