搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介质阻挡放电中类蜂窝超点阵斑图研究

李耀华 燕兆赫 闫志浩 李骋 潘宇扬 董丽芳

引用本文:
Citation:

介质阻挡放电中类蜂窝超点阵斑图研究

李耀华, 燕兆赫, 闫志浩, 李骋, 潘宇扬, 董丽芳

Research on Quasi Honeycomb Superlattice Pattern in Dielectric Barrier Discharge

LI Yaohua, YAN Zhaohe, YAN Zhihao, LI Cheng, PAN Yuyang, DONG Lifang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本工作设计了一种具有长方形边界的介质阻挡放电装置,首次观察到了一种包含被隔列拉伸蜂窝框架的蜂窝超点阵斑图,并对其形成机制进行了实验和理论研究.随着外加电压的增加,斑图从具有D6h对称性的蜂窝超点阵斑图演化到D2h对称性的类蜂窝超点阵斑图.实验上采用高速照相机和光电倍增管测量了上述两种斑图的时空结构,发现蜂窝超点阵斑图中的六边形子点阵变成为大、小条纹两个子点阵,同时蜂窝框架子点阵被隔列拉伸,而且除上升沿放电外还存在下降沿放电.理论上使用COMSOL Multiphysics软件数值求解泊松方程,模拟了外加电压上升沿中的隔列拉伸蜂窝框架放电前后的电场,其结果很好地解释了实验现象,给出了隔列拉伸的蜂窝框架的形成机制.
    Patterns formed in dielectric barrier discharge is a typical nonlinear selforganization phenomenon. Research on patterns helps elucidate the formation and evolution mechanisms of spatiotemporal structures in nonequilibrium systems, while also holding potential application value in fields such as material processing and plasma chemical engineering. A honeycomb superlattice pattern with an alternately-stretched honeycomb frame is observed in dielectric barrier discharge with a rectangular modulated gas gap for the first time and is studied both experimentally and theoretically. As the applied voltage increases, the pattern evolves from a hexagonal superlattice pattern with D6h symmetry to a quasi honeycomb superlattice pattern with D2h symmetry. Experimentally, the spatiotemporal structures of these two patterns are measured using an ICCD and PMTs. It is found that the hexagonal sublattice in the honeycomb superlattice pattern is divided into two sublattices, including a large stripe sublattice and a small stripe lattice. Additionally, the honeycomb frame sublattice is alternatelystretched. Discharges occur during both the rising and falling edges of the applied voltage. Through estimation of the wall charge quantities of the two types of honeycomb frames and analysis of the influence of boundaries on pattern formation, it is found that the quasi honeycomb superlattice pattern emerges as a self-organized structure under the influence of gas gap symmetry. Theoretically, the Poisson equation is numerically solved using COMSOL Multiphysics to simulate the electric field of the alternatelystretched honeycomb frame before and after discharge during the rising phase of the applied voltage. The result well explains the experimental phenomenon and provides the formation mechanism of the alternatelystretched honeycomb frame.
  • [1]

    Bánsági T, Vanag V K, Epstein I R 2011 Science 331 1309

    [2]

    Kameke A V, Huhn F, Muñuzuri A P, Pérez-Muñuzuri 2013 Phys. Rev. Lett. 110 088302

    [3]

    Rogers J L, Schatz M F, Brausch, Pesch W 2000 Phys. Rev. Lett. 85 4281

    [4]

    Perkins A C, Grigoriev R O, Schatz M F 2011 Phys. Rev. Lett. 107 064501

    [5]

    Cominotti R, Berti A, Farolfi A, Zenesini A, Lamporesi G, Carusotto I, Ferrari G. 2022 Phys. Rev. Lett. 128 210410

    [6]

    Frumkin V, Gokhale S 2023 Phys. Rev. E 108 012601

    [7]

    Bernecker B, Callegari T, Boeuf J P 2011 J. Phys. D:Appl. Phys. 44 262002

    [8]

    Shi H, Wang Y H, Wang D Z 2008 Phys. Plasmas 15 122306

    [9]

    McKay K, Donaghy D, He F, Bradley J W 2017 Plasma Sources Sci. Technol. 27 015002

    [10]

    Fan W L, Deng T K, Liu S, Liu R Q, He Y F, Liu Y H, Liu Y N, Liu F C 2025 Phys. Rev. E 111 024210.

    [11]

    Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 1

    [12]

    Callegari T, Bernecker B, Boeuf J P 2014 Plasma Sources Sci. Technol. 23 054003

    [13]

    Boeuf J P 2003 J. Phys. D:Appl. Phys. 36 53

    [14]

    Polonskyi O, Hartig T, Uzarski J R, Gordon M J 2021 Appl. Phys. Lett. 119 211601

    [15]

    Peng B F, Li J, Jiang N, Jiang Y, Chen Z Q, Lei Z P, Song J C 2024 Phys. Fluids 36 3

    [16]

    Brauer I, Bode M, Ammelt E, Purwins H G 2000 Phys. Rev. Lett. 84 4104

    [17]

    Breazeal W, Flynn K M, Gwinn E G 1995 Phys. Rev. E 52 1503

    [18]

    Guikema J, Miller N, Niehof J, Klein M, Walhout M 2000 Phys. Rev. Lett. 85 3817

    [19]

    Bernecker B, Callegari T, Blanco S, Fournier R, Boeuf J P 2009 Eur. Phys. J. Appl. Phys. 47 22808

    [20]

    Nie Q Y, Ren C S, Wang D Z, Li S Z, Zhang J L, Kong M G 2007 Appl. Phys. Lett. 90 221504

    [21]

    Dong L F, Mao Z G, Ran J X 2005 Chin. Phys. 14 1618

    [22]

    Dong L F, Li Y H, Qi X X, Fan W L, Li R, Liu S, Pan Y Y 2025 Opt. Express 33 37246

    [23]

    Dong L F, Zhang L J, He Y N, Wei T, Li Y H, Li C, Pan Y Y 2024 Appl. Phys. Lett. 125 10

    [24]

    Liu F C, Liu Y N, Liu Q, Wu Z C, Liu Y H, Gao K Y, He Y F, Fan W L, Dong L F 2022 Plasma Sources Sci. Technol. 31 025015

    [25]

    Fan W L, Wang Q H, Li R, Deng T K, Wang S, Li Y H, He Y F, Chu L Z, Liu F C 2024 Appl. Phys. Lett.124 12

    [26]

    Duan X X, Ouyang J T, Zhao X F, He F, 2009 Phys. Rev. E 80 016202

    [27]

    Feng J Y, Dong L F, Wei L Y, Fan W L, Li C X, Pan Y Y 2016 Phys. Plasmas 23 093502

    [28]

    Wei T, Dong L F, Zhang L J, He Y N, Li Y H, Li C, Pan Y Y 2024 Sci. Sin. Phys. Mech. Astron. 54 105211 (in Chinese) [卫婷,董丽芳,张立佳,贺玉楠,李耀华,李骋,潘宇扬 2024 中国科学: 物理学 力学 天文学 54 105211]

    [29]

    Dong L F, Fan W L, He Y F, Liu F C, Li S, Gao R L, Wang L 2006 Phys. Rev. E 73 066206

    [30]

    Dong L F, Liu W L, Wang H F, He Y F, Fan W L, Gao R L 2007 Phys. Rev. E 76 046210

    [31]

    Bernecker B, Callegari T, Blanco S, Fournier R, Boeuf J P 2009 Eur. Phys. J. Appl. Phys. 47 22808

    [32]

    Zhu P, Dong L F, Yang J, Gao Y N, Wang Y J, Li B 2015 Phys. Plasmas 22 023507

    [33]

    Yu G L, Dong L F, Dou Y Y, Gao Y, Sun H Y, Mi Y L 2018 Chin. J. Lumin. 39 1527 (in Chinese) [于广林,董丽芳,窦亚亚,孙浩洋,米彦霖 2018 发光学报 39 1527]

    [34]

    Li Y H, Wang Y, Pan Y Y, Tian M, Zhang J H, Dong L F 2024 Phys. Plasmas 31 033502

  • [1] 冉俊霞, 张寒, 陈沁怡, 周奕汛, 苏彤, 李庆, 李雪辰. 环-点阵-同心环斑图的放电演化机理及光谱诊断研究. 物理学报, doi: 10.7498/aps.74.20250737
    [2] 田爽, 张寒, 张喜, 张雪雪, 李雪辰, 李庆, 冉俊霞. 双气隙下介质阻挡放电斑图的放电特性与参数诊断. 物理学报, doi: 10.7498/aps.74.20250111
    [3] 李骋, 闫志浩, 齐晓秀, 李雨昕, 潘宇扬, 董丽芳. 条纹水电极介质阻挡放电中D2h超点阵斑图研究. 物理学报, doi: 10.7498/aps.74.20250985
    [4] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学. 物理学报, doi: 10.7498/aps.69.20191424
    [5] 刘伟波, 董丽芳. 介质阻挡放电中同心圆环斑图的产生机理. 物理学报, doi: 10.7498/aps.64.245202
    [6] 王荣, 吴莹, 刘少宝. 随机中毒对神经元网络时空动力学行为的影响. 物理学报, doi: 10.7498/aps.62.220504
    [7] 李雪辰, 刘润甫, 贾鹏英, 孔柳青. 流动氩气放电系统中条纹斑图形成的实验研究. 物理学报, doi: 10.7498/aps.61.115205
    [8] 陈俊英, 董丽芳, 李媛媛, 宋倩, 嵇亚飞. 大气压介质阻挡放电超四边形斑图的等离子体参量. 物理学报, doi: 10.7498/aps.61.075211
    [9] 贺亚峰, 冯晓敏, 张亮. 气体放电系统中时空斑图的时滞反馈控制. 物理学报, doi: 10.7498/aps.61.245204
    [10] 董丽芳, 岳晗, 范伟丽, 李媛媛, 杨玉杰, 肖红. 介质阻挡放电跃变升压模式下靶波斑图研究. 物理学报, doi: 10.7498/aps.60.065206
    [11] 董丽芳, 谢伟霞, 赵海涛, 范伟丽, 贺亚峰, 肖红. 氩气/空气介质阻挡放电自组织超六边形斑图实验研究. 物理学报, doi: 10.7498/aps.58.4806
    [12] 董丽芳, 赵海涛, 谢伟霞, 王红芳, 刘微粒, 范伟丽, 肖 红. 介质阻挡放电系统中超四边形斑图形成的实验研究. 物理学报, doi: 10.7498/aps.57.5768
    [13] 范伟丽, 董丽芳, 李雪辰, 尹增谦, 贺亚峰, 刘书华. Air/Ar介质阻挡放电中正方形斑图的特性研究. 物理学报, doi: 10.7498/aps.56.1467
    [14] 董丽芳, 刘书华, 王红芳, 范伟丽, 高瑞玲, 郝雅娟. 介质阻挡放电中两种不同时空对称性的六边形发光斑图. 物理学报, doi: 10.7498/aps.56.3332
    [15] 董丽芳, 高瑞玲, 贺亚峰, 范伟丽, 李雪辰, 刘书华, 刘微粒. 介质阻挡放电斑图中放电通道的相互作用研究. 物理学报, doi: 10.7498/aps.56.1471
    [16] 董丽芳, 李树锋, 刘 峰, 刘富成, 刘书华, 范伟丽. 大气压氩气介质阻挡放电中的四边形斑图和六边形斑图. 物理学报, doi: 10.7498/aps.55.362
    [17] 董丽芳, 毛志国, 冉俊霞. 氩气介质阻挡放电不同放电模式的电学特性研究. 物理学报, doi: 10.7498/aps.54.3268
    [18] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟. 物理学报, doi: 10.7498/aps.54.4808
    [19] 尹增谦, 王 龙, 董丽芳, 李雪辰, 柴志方. 介质阻挡放电中微放电的映射方程. 物理学报, doi: 10.7498/aps.52.929
    [20] 董丽芳, 李雪辰, 尹增谦, 王龙. 大气压介质阻挡放电中的自组织斑图结构. 物理学报, doi: 10.7498/aps.51.2296
计量
  • 文章访问数:  91
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-26

/

返回文章
返回