-
本工作设计了一种具有长方形边界的介质阻挡放电装置,首次观察到了一种包含被隔列拉伸蜂窝框架的蜂窝超点阵斑图,并对其形成机制进行了实验和理论研究.随着外加电压的增加,斑图从具有D6h对称性的蜂窝超点阵斑图演化到D2h对称性的类蜂窝超点阵斑图.实验上采用高速照相机和光电倍增管测量了上述两种斑图的时空结构,发现蜂窝超点阵斑图中的六边形子点阵变成为大、小条纹两个子点阵,同时蜂窝框架子点阵被隔列拉伸,而且除上升沿放电外还存在下降沿放电.理论上使用COMSOL Multiphysics软件数值求解泊松方程,模拟了外加电压上升沿中的隔列拉伸蜂窝框架放电前后的电场,其结果很好地解释了实验现象,给出了隔列拉伸的蜂窝框架的形成机制.Patterns formed in dielectric barrier discharge is a typical nonlinear selforganization phenomenon. Research on patterns helps elucidate the formation and evolution mechanisms of spatiotemporal structures in nonequilibrium systems, while also holding potential application value in fields such as material processing and plasma chemical engineering. A honeycomb superlattice pattern with an alternately-stretched honeycomb frame is observed in dielectric barrier discharge with a rectangular modulated gas gap for the first time and is studied both experimentally and theoretically. As the applied voltage increases, the pattern evolves from a hexagonal superlattice pattern with D6h symmetry to a quasi honeycomb superlattice pattern with D2h symmetry. Experimentally, the spatiotemporal structures of these two patterns are measured using an ICCD and PMTs. It is found that the hexagonal sublattice in the honeycomb superlattice pattern is divided into two sublattices, including a large stripe sublattice and a small stripe lattice. Additionally, the honeycomb frame sublattice is alternatelystretched. Discharges occur during both the rising and falling edges of the applied voltage. Through estimation of the wall charge quantities of the two types of honeycomb frames and analysis of the influence of boundaries on pattern formation, it is found that the quasi honeycomb superlattice pattern emerges as a self-organized structure under the influence of gas gap symmetry. Theoretically, the Poisson equation is numerically solved using COMSOL Multiphysics to simulate the electric field of the alternatelystretched honeycomb frame before and after discharge during the rising phase of the applied voltage. The result well explains the experimental phenomenon and provides the formation mechanism of the alternatelystretched honeycomb frame.
-
Keywords:
- Dielectric barrier discharge /
- Pattern /
- Spatiotemporal dynamics
-
[1] Bánsági T, Vanag V K, Epstein I R 2011 Science 331 1309
[2] Kameke A V, Huhn F, Muñuzuri A P, Pérez-Muñuzuri 2013 Phys. Rev. Lett. 110 088302
[3] Rogers J L, Schatz M F, Brausch, Pesch W 2000 Phys. Rev. Lett. 85 4281
[4] Perkins A C, Grigoriev R O, Schatz M F 2011 Phys. Rev. Lett. 107 064501
[5] Cominotti R, Berti A, Farolfi A, Zenesini A, Lamporesi G, Carusotto I, Ferrari G. 2022 Phys. Rev. Lett. 128 210410
[6] Frumkin V, Gokhale S 2023 Phys. Rev. E 108 012601
[7] Bernecker B, Callegari T, Boeuf J P 2011 J. Phys. D:Appl. Phys. 44 262002
[8] Shi H, Wang Y H, Wang D Z 2008 Phys. Plasmas 15 122306
[9] McKay K, Donaghy D, He F, Bradley J W 2017 Plasma Sources Sci. Technol. 27 015002
[10] Fan W L, Deng T K, Liu S, Liu R Q, He Y F, Liu Y H, Liu Y N, Liu F C 2025 Phys. Rev. E 111 024210.
[11] Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 1
[12] Callegari T, Bernecker B, Boeuf J P 2014 Plasma Sources Sci. Technol. 23 054003
[13] Boeuf J P 2003 J. Phys. D:Appl. Phys. 36 53
[14] Polonskyi O, Hartig T, Uzarski J R, Gordon M J 2021 Appl. Phys. Lett. 119 211601
[15] Peng B F, Li J, Jiang N, Jiang Y, Chen Z Q, Lei Z P, Song J C 2024 Phys. Fluids 36 3
[16] Brauer I, Bode M, Ammelt E, Purwins H G 2000 Phys. Rev. Lett. 84 4104
[17] Breazeal W, Flynn K M, Gwinn E G 1995 Phys. Rev. E 52 1503
[18] Guikema J, Miller N, Niehof J, Klein M, Walhout M 2000 Phys. Rev. Lett. 85 3817
[19] Bernecker B, Callegari T, Blanco S, Fournier R, Boeuf J P 2009 Eur. Phys. J. Appl. Phys. 47 22808
[20] Nie Q Y, Ren C S, Wang D Z, Li S Z, Zhang J L, Kong M G 2007 Appl. Phys. Lett. 90 221504
[21] Dong L F, Mao Z G, Ran J X 2005 Chin. Phys. 14 1618
[22] Dong L F, Li Y H, Qi X X, Fan W L, Li R, Liu S, Pan Y Y 2025 Opt. Express 33 37246
[23] Dong L F, Zhang L J, He Y N, Wei T, Li Y H, Li C, Pan Y Y 2024 Appl. Phys. Lett. 125 10
[24] Liu F C, Liu Y N, Liu Q, Wu Z C, Liu Y H, Gao K Y, He Y F, Fan W L, Dong L F 2022 Plasma Sources Sci. Technol. 31 025015
[25] Fan W L, Wang Q H, Li R, Deng T K, Wang S, Li Y H, He Y F, Chu L Z, Liu F C 2024 Appl. Phys. Lett.124 12
[26] Duan X X, Ouyang J T, Zhao X F, He F, 2009 Phys. Rev. E 80 016202
[27] Feng J Y, Dong L F, Wei L Y, Fan W L, Li C X, Pan Y Y 2016 Phys. Plasmas 23 093502
[28] Wei T, Dong L F, Zhang L J, He Y N, Li Y H, Li C, Pan Y Y 2024 Sci. Sin. Phys. Mech. Astron. 54 105211 (in Chinese) [卫婷,董丽芳,张立佳,贺玉楠,李耀华,李骋,潘宇扬 2024 中国科学: 物理学 力学 天文学 54 105211]
[29] Dong L F, Fan W L, He Y F, Liu F C, Li S, Gao R L, Wang L 2006 Phys. Rev. E 73 066206
[30] Dong L F, Liu W L, Wang H F, He Y F, Fan W L, Gao R L 2007 Phys. Rev. E 76 046210
[31] Bernecker B, Callegari T, Blanco S, Fournier R, Boeuf J P 2009 Eur. Phys. J. Appl. Phys. 47 22808
[32] Zhu P, Dong L F, Yang J, Gao Y N, Wang Y J, Li B 2015 Phys. Plasmas 22 023507
[33] Yu G L, Dong L F, Dou Y Y, Gao Y, Sun H Y, Mi Y L 2018 Chin. J. Lumin. 39 1527 (in Chinese) [于广林,董丽芳,窦亚亚,孙浩洋,米彦霖 2018 发光学报 39 1527]
[34] Li Y H, Wang Y, Pan Y Y, Tian M, Zhang J H, Dong L F 2024 Phys. Plasmas 31 033502
计量
- 文章访问数: 91
- PDF下载量: 1
- 被引次数: 0