搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水基有机溶剂液膜冻结初期表层冰片生长机制研究

孙宇阳 牛喻樱 宗晓晓 赵玉刚

引用本文:
Citation:

水基有机溶剂液膜冻结初期表层冰片生长机制研究

孙宇阳, 牛喻樱, 宗晓晓, 赵玉刚

the Growth Mechanism of Surface Ice Flakes at the Initial Stage of Freezing of Water-based Organic Solvent Liquid Film

Sun Yuyang, Niu Yuying, Zong Xiaoxiao, Zhao Yugang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 液滴及液膜冻结广泛存在于自然界与工程应用中。近年多组分液滴体系的已揭示界面流动与溶质再分布的普遍机制。然而,液滴界面曲率与视场限制使对单个分离冰片的连续显微原位观测受限。鉴于液滴与液膜在冻结过程中的界面传热与溶质传输机理具有相似性,本文采用平坦多组分液膜体系,观察在冷表面上对异丙醇-水二元液膜在不同过冷度下的冻结过程,开展对单个分离冰片的显微原位研究。实验发现冰片外形随过冷度由六棱锥逐渐转变为十二棱锥和圆锥形,并伴随透明度下降。建立了考虑溶质扩散、热扩散与马兰戈尼效应的物理模型,揭示了冰片形貌变化的主导机制。结果表明,冰片结构演化受溶质浓度梯度主导,流动与扩散的竞争控制其各向异性生长特征。本文为多组分液膜冻结过程中的界面动力学提供了新见解。
    Freezing of multicomponent droplets and thin films is ubiquitous in natural and engineered settings. Prior studies on multicomponent droplets, including Marangoni-driven self-lifting droplets and soap-bubble freezing, have established the roles of interfacial flow and solute redistribution and often exhibit a snow-globe effect with migrating ice particles. Curvature and field-of-view constraints in droplet systems hinder continuous observation of a single object. Here, leveraging the comparability of interfacial heat and mass transport between droplets and films, we employ a flat isopropanol–water binary film on a cooled substrate to enable high-resolution, time-resolved in situ microscopy of single separated ice flakes across a range of substrate supercooling (ΔT). Experiments show that with increasing ΔT, the external shape of ice flakes evolves from hexagonal pyramidal to dodecagonal pyramidal and ultimately toward a near-conical form, accompanied by reduced transparency. We quantify morphological evolution using a shape factor β and qualitatively distinguish crystal-structure differences with combined bright- and dark-field microscopy. A minimal model that couples solute and thermal diffusion with Marangoni stresses rationalizes the observations: solute-concentration gradients primarily drive structural evolution, while the competition between advection and diffusion governs anisotropic growth. These results provide mechanistic insight into interfacial freezing dynamics of multicomponent liquid films and establish flat-film microscopy as a platform for single-flake kinetics.
  • [1]

    Wu X, Chu F, Ma Q, Zhu B 2017 Appl. Therm. Eng. 118 448

    [2]

    Li L, Liu Z, Li Y, Dong Y 2017 Int. J. Heat Mass Transfer 113 166

    [3]

    Li K, Miao Y, Xia D, Liu N, Zhang H, Dou B, He Q, Zhao Y, Li C, Mohtaram S 2024 Appl. Therm. Eng.248 123282

    [4]

    Wang P, Zhou W, Bao Y, Li H 2018 Struct Control Health Monit. 25 e2138

    [5]

    Wei K, Yang Y, Zuo H, Zhong D 2020 Wind Energy 23 433

    [6]

    Cebeci T, Kafyeke F 2003 Annu. Rev. Fluid Mech. 35 11

    [7]

    Cao Y, Wu Z, Su Y, Xu Z 2015 Prog. Aeronaut. Sci. 74 62

    [8]

    Hu H-B, He Q, Yu S-X, Zhang Z-Z, Song D 2016 Acta Phys. Sin. 65 104703(in Chinese) [胡海宝,何强,于思晓,张兆珠,宋东 2016 物理学报 57 4667]

    [9]

    He Z, Zhuo Y, Wang F, He J, Zhang Z 2019 Soft Matter 15 2905

    [10]

    Ji K, Rui X, Li L, Leblond A, McClure G 2015 Comput. Struct. 157 153

    [11]

    Gurganus C, Kostinski A B, Shaw R A 2011 J. Phys. Chem. Lett. 2 1449

    [12]

    Gurganus C, Kostinski A B, Shaw R A 2013 J. Phys. Chem. C 117 6195

    [13]

    Inada T, Tomita H, Koyama T 2014 Int. J. Refrig. 40 294

    [14]

    Fletcher N H 1958 J. Chem. Phys. 29 572

    [15]

    Wildeman S, Sterl S, Sun C, Lohse D 2017 Phys. Rev. Lett. 118 084101

    [16]

    Jung S, Tiwari M K, Doan N V, Poulikakos D 2012 Nat. Commun. 3 615

    [17]

    Wang Y, Cheng Y 2019 Int. J. Heat Mass Transfer 140 1023

    [18]

    Peppin S S L, Elliott J A W, Worster M G 2006 J. Fluid Mech. 554 147

    [19]

    Zhao Y, Yan Z, Zhang H, Yang C, Cheng P 2021 Int. J. Heat Mass Transfer 165 120609

    [20]

    Marín A G, Enríquez O R, Brunet P, Colinet P, Snoeijer J H 2014 Phys. Rev. Lett. 113 054301

    [21]

    Yan X, Au S C Y, Chan S C, Chan Y L, Leung N C, Wu W Y, Sin D T, Zhao G, Chung C H Y, Mei M, Yang Y, Qiu H, Yao S 2024 Nat. Commun. 15 1567

    [22]

    Lyu S, Zhu X, Legendre D, Sun C 2023 Droplet 2 e90

    [23]

    Fang W-Z, Zhu F, Zhu L, Tao W-Q, Yang C 2022 Commun. Phys. 5 51

    [24]

    Jin P, Yan X, Hoque M J, Rabbi K F, Sett S, Ma J, Li J, Fang X, Carpenter J, Cai S, Tao W, Miljkovic N 2022 Cell Rep. Phys. Sci. 3 100894

    [25]

    Zhang X, Liu X, Wu X M, Min J C 2020 J. Eng. Thermophys. 41 402 (in Chinese) [张旋, 刘鑫, 吴晓敏, 闵敬春 2020 工程热物理学报 41 402]

    [26]

    Dong Q-Q, Hu H-B, Chen S-Q, He Q, Bao L-Y 2018 Acta Phys. Sin. 67 054702 (in Chinese) [董琪琪,胡海豹,陈少强,何强,鲍路瑶 2018 物理学报 67 054702]

    [27]

    Ivall J, Hachem M, Coulombe S, Servio P 2015 Cryst. Growth Des. 15 3969

    [28]

    Zhao Y, Yang C, Cheng P 2021 Appl. Phys. Lett. 118 14

    [29]

    Jiang Y, Zhao Y, Zhang H, Yang C, Cheng P 2024 Cell Rep. Phys. Sci. 5 4

    [30]

    Zeng H, Wakata Y, Chao X, Li M, Sun C 2023 J. Colloid and Interf. Sci. 648 736

    [31]

    Dang Q, Song M, Dang C, Zhan T, Zhang L 2022 Langmuir 38 7846

    [32]

    Miao Y, Zhao Y, Gao M, Yang L, Yang C 2022 Appl. Phys. Lett. 120 091602

    [33]

    Chu F, Li S, Zhao C, Feng Y, Lin Y, Wu X, Yan X, Miljkovic N 2024 Nat. Commun. 15 2249

    [34]

    Schutzius T M, Jung S, Maitra T, Graeber G, Köhme M, Poulikakos D 2015 Nature 527 82

    [35]

    Graeber G, Schutzius T M, Eghlidi H, Poulikakos D 2017 Proc. Natl. Acad. Sci. 114 11040

    [36]

    Zhuo Y, Xiao S, Håkonsen V, He J, Zhang Z 2020 ACS Mater. Lett. 2 616

    [37]

    Zhu Z, Zhang X, Zhao Y, Huang X, Yang C 2022 Int. J. Therm. Sci. 171 107241

    [38]

    Lambley H, Graeber G, Vogt R, Gaugler L C, Baumann E, Schutzius T M, Poulikakos D 2023 Nat. Phys.19 649

    [39]

    Chu F Q, Wu X M, Zhu Y 2017 J. Eng. Thermophys. 38 352(in Chinese) [褚福强, 吴晓敏, 朱毅 2017 工程热物理学报 38 352]

    [40]

    Chen R-H, Phuoc T X, Martello D 2011 Int. J. Heat Mass Transfer 54 2459

    [41]

    Bhuiyan M H U, Saidur R, Amalina M A, Mostafizur R M, Islam A 2015 Procedia Eng. 105 431

    [42]

    Ahmadi S F, Nath S, Kingett C M, Yue P, Boreyko J B 2019 Nat. Commun. 10 2531

    [43]

    Wang F, Chen L, Li Y, Huo P, Gu X, Hu M, Deng D 2024 Phys. Rev. Lett. 132 014002

    [44]

    Wang F, Zeng H, Du Y, Tang X, Sun C 2024 arXiv:2407.20555v1 [physics.flu-dyn]

    [45]

    Moore M R, Mughal M S, Papageorgiou D T 2017 J. Fluid Mech. 817 455

    [46]

    Thiévenaz V, Josserand C, Séon T 2020 Phys. Rev. Fluids 5 041601

    [47]

    Schremb M, Campbell J M, Christenson H K, Tropea C 2017 Langmuir 33 4870

    [48]

    Campbell J M, Sandnes B, Flekkøy E G, Måløy K J 2022 Cryst. Growth Des. 22 2433

    [49]

    Babich A, Bashkatov A, Yang X, Mutschke G, Eckert K 2023 Int. J. Heat Mass Transfer 215 124466

    [50]

    Tokgoz S, Geisler R, van Bokhoven L J A, Wieneke B 2012 Meas. Sci. Technol. 23 115302

    [51]

    Zhang M, Gao C, Ye B, Tang J, Jiang B 2019 Cryobiology 86 47

    [52]

    Li J-Q, Rahman M, Patel S, Bogner R H, Fan T-H 2022 Cryst. Growth Des. 22 6917

    [53]

    Kurz W, Fisher D J 1992 Fundamentals of Solidification 5th Edition (Switzerland: Trans Tech Publication Ltd) pp56-59

    [54]

    Libbrecht K 2017 Annu. Rev. Mater. Res. 47 271

    [55]

    Zhao Y, Guo Q, Lin T, Cheng P 2020 Int. J. Heat Mass Transfer 159 120074

    [56]

    Lohse D, Zhang X 2020 Nat. Rev. Phys. 2 426

    [57]

    Kitahata H, Yoshinaga N 2018 J. Chem. Physi. 148 134906

    [58]

    Mullins W W, Sekerka R F 1964 J. Appl. Phys. 35 444

    [59]

    Dehaoui A, Issenmann B, Caupin F 2015 Proc. Natl. Acad. Sci. 112 12020

    [60]

    Pothoczki S, Pethes I, Pusztai L, Temleitner L, Csókás D, Kohara S, Ohara K, Bakó I 2021 J. Mol. Liq. 329 115592

  • [1] 谢科薇, 陶金成, 董裕力, 翁雨燕, 杨俊义, 方亮. 二元混合物在液体层上发生马兰戈尼爆裂的研究. 物理学报, doi: 10.7498/aps.73.20231364
    [2] 孟令知, 苑立波. 离散波导热扩散耦合机理及其应用. 物理学报, doi: 10.7498/aps.72.20230204
    [3] 刘征宇, 杨昆, 魏自红, 姚利阳. 包含液相扩散方程简化的锂离子电池电化学模型. 物理学报, doi: 10.7498/aps.68.20190159
    [4] 任峰, 阴生毅, 卢志鹏, 李阳, 王宇, 张申金, 杨峰, 卫东. 深紫外激光光发射与热发射电子显微镜在热扩散阴极研究中的应用. 物理学报, doi: 10.7498/aps.66.187901
    [5] 李晓丽, Sun Jian-Gang, 陶宁, 曾智, 赵跃进, 沈京玲, 张存林. 非线性拟合方法用于透射式脉冲红外技术测试碳/碳复合材料的热扩散系数. 物理学报, doi: 10.7498/aps.66.188702
    [6] 谢蒂旎, 彭洪尚, 黄世华, 由芳田, 王小卉. 水热法促进EuVO4@YVO4核壳结构纳米颗粒中Eu3+的扩散及其对发光性能的影响. 物理学报, doi: 10.7498/aps.63.147801
    [7] 汤富领, 陈功宝, 谢勇, 路文江. Al表面的"类液"结构及其自扩散通道. 物理学报, doi: 10.7498/aps.60.066801
    [8] 张丽, 刘树堂. 薄板热扩散分形生长的环境干扰控制. 物理学报, doi: 10.7498/aps.59.7708
    [9] 李美丽, 张 迪, 孙宏宁, 付兴烨, 姚秀伟, 李 丛, 段永平, 闫 元, 牟洪臣, 孙民华. 二元Lennard-Jones液体的相分离过程及其扩散性质的分子动力学研究. 物理学报, doi: 10.7498/aps.57.7157
    [10] 颜利芬, 王红成, 佘卫龙. 扩散效应对光伏孤子相互作用的影响. 物理学报, doi: 10.7498/aps.55.5257
    [11] 倪 经, 蔡建旺, 赵见高, 颜世申, 梅良模, 朱世富. Fe/Si多层膜的层间耦合与界面扩散. 物理学报, doi: 10.7498/aps.53.3920
    [12] 张先梅, 万宝年, 阮怀林, 吴振伟. HT-7托卡马克等离子体欧姆放电时电子热扩散系数的研究. 物理学报, doi: 10.7498/aps.50.715
    [13] 刘慕仁, 陈若航, 李华兵, 孔令江. 二维对流扩散方程的格子Boltzmann方法. 物理学报, doi: 10.7498/aps.48.1800
    [14] 赵建华, 刘日平, 周镇华, 张湘义, 张 明, 许应凡, 王文魁. 一种测量液态金属扩散系数的新方法——固/液-液/固复合三层膜法. 物理学报, doi: 10.7498/aps.48.416
    [15] 赵越超, 冼鼎昌, 吴自勤. 两元合金组成的扩散偶的相形成过程. 物理学报, doi: 10.7498/aps.42.78
    [16] 杨传铮;钟福民. 二元扩散偶界面的元素扩散和金属间相的形成. 物理学报, doi: 10.7498/aps.38.1354
    [17] 夏蒙棼. 随机磁场中的反常扩散效应. 物理学报, doi: 10.7498/aps.30.1275
    [18] 谢党. 测定半导体扩散层表面浓度、p-n结深度及扩散系数的霍耳效应法. 物理学报, doi: 10.7498/aps.22.877
    [19] 卓济苍, 续競存. 合金扩散参量二极管的优值. 物理学报, doi: 10.7498/aps.20.311
    [20] 肖振喜, 张应. 低压含氢扩散云室. 物理学报, doi: 10.7498/aps.16.113
计量
  • 文章访问数:  70
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-24

/

返回文章
返回