搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气压介质阻挡放电超四边形斑图的等离子体参量

陈俊英 董丽芳 李媛媛 宋倩 嵇亚飞

引用本文:
Citation:

大气压介质阻挡放电超四边形斑图的等离子体参量

陈俊英, 董丽芳, 李媛媛, 宋倩, 嵇亚飞

Plasma parameters of square superlattice pattern in a dielectric barrier discharge

Chen Jun-Ying, Dong Li-Fang, Li Yuan-Yuan, Song Qian, Ji Ya-Fei
PDF
导出引用
  • 本工作利用双水电极介质阻挡放电装置,采用发射光谱方法,在大气压氩气介质阻挡放电中研究了由不同空间尺度 微放电通道构成的超四边形斑图的等离子体参量.实验发现直径较大的微放电通道(大点)和直径较小的微放电通道(小点)亮度不同.采用氮分子第二正带系谱线计算了分子振动温度,利用谱线强度比方法得到了电子激发温度,用氩原子696.54 nm谱线的Stark展宽估算了电子密度.结果显示小点的电子密度和分子振动温度均高于大点,而电子激发温度低于大点.这说明稳定超四边形斑图中不同尺度微放电的等离子体状态不同.
    Dielectric barrier discharge is an important method of producing nonequilibrium low-temperature plasma. Measurement of the plasma parameters is highly valuable for its industrial application. Plasma parameters of square superlattice pattern are investigated by optical emission spectroscopy in a dielectric barrier discharge by using a two-liquid-electrode dielectric barrier discharge device in argon at atmospheric pressure. It is found that the light intensity of the large diameter microdischarge channel(big dot) is different from that of the small diameter channel (small dot). Vibrational temperature is investigated by using the N_{2} second positive spectrum. Electronic excitation temperature is measured by means of spectral line intensity ratio. Electron density is obtained by using the stark broadening of Ar atom 696.54 nm spectral line. The results show that the electron density and the vibrational temperature of the small dot are larger than those of the big dot but the electronic excitation temperature is lower than that of the big dot. It is suggested that the plasma state of the big dot is different from that of the small dot in the stable square superlattice pattern.
    • 基金项目: 国家自然科学基金(批准号: 10975043),河北省自然科学基金(批准号: 2010000185),河北省教育厅重点项目(批准号: ZD2010140)和 2010年度高等学校博士学科点专项科研基金资助课题(批准号: 20101301110001)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10975043 ), the Natural Science Foundation of Hebei Province, China (Grant No. A2010000185 ), the Key project of Department of Education of He-bei Province (Grant No. ZD2010140), and the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20101301110001).
    [1]

    Kogelschatz U 2002 IEEE Trans on Plas. Sci. 30 1400

    [2]

    S H Liu, Neiger M 2001 J. Phys. D: Appl. Phys. 34 1632

    [3]

    Hao Y P, Yang L, Tu E L, Chen J Y, Zhu Z W, Wang X L 2010 Acta Phys Sin. 59 2610 (in Chinese) [郝艳捧, 阳林, 涂恩来, 陈建阳, 朱展文, 王晓蕾 2010 物理学报 59 2610]

    [4]

    Koichi T, Tamiya F 2001 IEEE Trans. on Plasma Sci. 29 518

    [5]

    Wang Y H, Wang D Z 2006 Acta Phys Sin. 55 5923 (in Chinese)王艳辉, 王德真 2006 物理学报 55 5923]

    [6]

    Ouyang Q 2000 Pattern Formation in Reaction-Diffusion Systems (Shanghai: Shanghai Scientific & Technological Publishing Education House) (in Chinese) [欧阳颀\ 2000\ 反应扩散系统中的斑图动力学(上海:上海科技教育出版社)]

    [7]

    Pu Y D, Yang J M, Jin F T, Zhang L, Ding Y K 2011 Acta Phys Sin. 60 045210 (in Chinese) [蒲昱东, 杨家敏, 靳奉涛, 张璐, 丁永坤 2011 物理学报 60 045210]

    [8]

    Masoud N, Martus K, Figus M, Becker K 2005 Contrib. Plasma Phys. 45 30

    [9]

    Nersisyan G, Graham W G 2004 Plasma Sources Sci. Technol. 13 582

    [10]

    Griem H R 1974 Spectral line broadening by plasmas (New York: Academic)

    [11]

    Kozlov K, Shepeliuk O, Monyakin A, Dobryakov V, Samoilovich V 1995 Experimental Proc. Annual Congress of the Polish Chemistry Society (Lublin, Poland) 79—83

    [12]

    Kozlov K V,Wagner H E, Brandenburg R, Michel P 2001 J. Phys. D: Appl. Phys. 34 3164

    [13]

    Davide Mariotti, Yoshiki Shimizu, Takeshi Sasaki, NaotoKoshizaki 2006 Appl. Phys. Lett. 89 201502

    [14]

    Torres J, Palomares J M, Sola A, J J A M vander Mullen, Gamero A 2007 J. Phys. D: Appl. Phys. 40 5929

    [15]

    Dong L F, Ran J X, Mao Z G 2005 Appl. Phys. Lett. 86 161501

    [16]

    Dong L F, Qi Y Y, Zhao Z C, Li Y H 2008 Plasma Sources Sci. Technol. 17 015015

    [17]

    Herzberg G Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules (中译本,分子光谱与分子结构,第一卷:双原子分子光谱)(北京: 科学出版社), 1983, p155

    [18]

    Dong L F, Ran J X, Mao Z G 2005 Acta Phys. Sin. 54 2167 (in Chinese) [董丽芳, 冉俊霞, 毛志国 2005 物理学报 54 2167]

    [19]

    Pellerin S, Musiol K, Pokrzywka B, Chapelle J 1996 J. Phys. B 29 3911

    [20]

    Potekhin A Y, Chabrier G, Gilles D 2002 Phys. Rev. E 65 1

    [21]

    Dong L F, Qi Y Y, Liu W Y, Fan W L 2009 J. Appl. Phys. 106 013301

  • [1]

    Kogelschatz U 2002 IEEE Trans on Plas. Sci. 30 1400

    [2]

    S H Liu, Neiger M 2001 J. Phys. D: Appl. Phys. 34 1632

    [3]

    Hao Y P, Yang L, Tu E L, Chen J Y, Zhu Z W, Wang X L 2010 Acta Phys Sin. 59 2610 (in Chinese) [郝艳捧, 阳林, 涂恩来, 陈建阳, 朱展文, 王晓蕾 2010 物理学报 59 2610]

    [4]

    Koichi T, Tamiya F 2001 IEEE Trans. on Plasma Sci. 29 518

    [5]

    Wang Y H, Wang D Z 2006 Acta Phys Sin. 55 5923 (in Chinese)王艳辉, 王德真 2006 物理学报 55 5923]

    [6]

    Ouyang Q 2000 Pattern Formation in Reaction-Diffusion Systems (Shanghai: Shanghai Scientific & Technological Publishing Education House) (in Chinese) [欧阳颀\ 2000\ 反应扩散系统中的斑图动力学(上海:上海科技教育出版社)]

    [7]

    Pu Y D, Yang J M, Jin F T, Zhang L, Ding Y K 2011 Acta Phys Sin. 60 045210 (in Chinese) [蒲昱东, 杨家敏, 靳奉涛, 张璐, 丁永坤 2011 物理学报 60 045210]

    [8]

    Masoud N, Martus K, Figus M, Becker K 2005 Contrib. Plasma Phys. 45 30

    [9]

    Nersisyan G, Graham W G 2004 Plasma Sources Sci. Technol. 13 582

    [10]

    Griem H R 1974 Spectral line broadening by plasmas (New York: Academic)

    [11]

    Kozlov K, Shepeliuk O, Monyakin A, Dobryakov V, Samoilovich V 1995 Experimental Proc. Annual Congress of the Polish Chemistry Society (Lublin, Poland) 79—83

    [12]

    Kozlov K V,Wagner H E, Brandenburg R, Michel P 2001 J. Phys. D: Appl. Phys. 34 3164

    [13]

    Davide Mariotti, Yoshiki Shimizu, Takeshi Sasaki, NaotoKoshizaki 2006 Appl. Phys. Lett. 89 201502

    [14]

    Torres J, Palomares J M, Sola A, J J A M vander Mullen, Gamero A 2007 J. Phys. D: Appl. Phys. 40 5929

    [15]

    Dong L F, Ran J X, Mao Z G 2005 Appl. Phys. Lett. 86 161501

    [16]

    Dong L F, Qi Y Y, Zhao Z C, Li Y H 2008 Plasma Sources Sci. Technol. 17 015015

    [17]

    Herzberg G Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules (中译本,分子光谱与分子结构,第一卷:双原子分子光谱)(北京: 科学出版社), 1983, p155

    [18]

    Dong L F, Ran J X, Mao Z G 2005 Acta Phys. Sin. 54 2167 (in Chinese) [董丽芳, 冉俊霞, 毛志国 2005 物理学报 54 2167]

    [19]

    Pellerin S, Musiol K, Pokrzywka B, Chapelle J 1996 J. Phys. B 29 3911

    [20]

    Potekhin A Y, Chabrier G, Gilles D 2002 Phys. Rev. E 65 1

    [21]

    Dong L F, Qi Y Y, Liu W Y, Fan W L 2009 J. Appl. Phys. 106 013301

  • [1] 张鑫, 黄勇, 王万波, 唐坤, 李华星. 对称式布局介质阻挡放电等离子体激励器诱导启动涡. 物理学报, 2016, 65(17): 174701. doi: 10.7498/aps.65.174701
    [2] 赵光银, 李应红, 梁华, 化为卓, 韩孟虎. 纳秒脉冲表面介质阻挡等离子体激励唯象学仿真. 物理学报, 2015, 64(1): 015101. doi: 10.7498/aps.64.015101
    [3] 刘伟波, 董丽芳. 介质阻挡放电中同心圆环斑图的产生机理. 物理学报, 2015, 64(24): 245202. doi: 10.7498/aps.64.245202
    [4] 程钰锋, 聂万胜, 车学科, 田希晖, 侯志勇, 周鹏辉. 不同压力下介质阻挡放电等离子体诱导流场演化的实验研究. 物理学报, 2013, 62(10): 104702. doi: 10.7498/aps.62.104702
    [5] 李雪辰, 刘润甫, 贾鹏英, 孔柳青. 流动氩气放电系统中条纹斑图形成的实验研究. 物理学报, 2012, 61(11): 115205. doi: 10.7498/aps.61.115205
    [6] 董丽芳, 岳晗, 范伟丽, 李媛媛, 杨玉杰, 肖红. 介质阻挡放电跃变升压模式下靶波斑图研究. 物理学报, 2011, 60(6): 065206. doi: 10.7498/aps.60.065206
    [7] 江南, 曹则贤. 一种大气压放电氦等离子体射流的实验研究. 物理学报, 2010, 59(5): 3324-3330. doi: 10.7498/aps.59.3324
    [8] 董丽芳, 谢伟霞, 赵海涛, 范伟丽, 贺亚峰, 肖红. 氩气/空气介质阻挡放电自组织超六边形斑图实验研究. 物理学报, 2009, 58(7): 4806-4811. doi: 10.7498/aps.58.4806
    [9] 李 钢, 徐燕骥, 穆克进, 聂超群, 朱俊强, 张 翼, 李汉明. 平面激光诱导荧光技术在交错电极介质阻挡放电等离子体研究中的初步应用. 物理学报, 2008, 57(10): 6444-6449. doi: 10.7498/aps.57.6444
    [10] 董丽芳, 王红芳, 刘微粒, 贺亚峰, 刘富成, 刘书华. 介质阻挡放电中电介质参量对放电时间特性的影响. 物理学报, 2008, 57(3): 1802-1806. doi: 10.7498/aps.57.1802
    [11] 董丽芳, 赵海涛, 谢伟霞, 王红芳, 刘微粒, 范伟丽, 肖 红. 介质阻挡放电系统中超四边形斑图形成的实验研究. 物理学报, 2008, 57(9): 5768-5773. doi: 10.7498/aps.57.5768
    [12] 董丽芳, 刘书华, 王红芳, 范伟丽, 高瑞玲, 郝雅娟. 介质阻挡放电中两种不同时空对称性的六边形发光斑图. 物理学报, 2007, 56(6): 3332-3336. doi: 10.7498/aps.56.3332
    [13] 范伟丽, 董丽芳, 李雪辰, 尹增谦, 贺亚峰, 刘书华. Air/Ar介质阻挡放电中正方形斑图的特性研究. 物理学报, 2007, 56(3): 1467-1470. doi: 10.7498/aps.56.1467
    [14] 董丽芳, 高瑞玲, 贺亚峰, 范伟丽, 李雪辰, 刘书华, 刘微粒. 介质阻挡放电斑图中放电通道的相互作用研究. 物理学报, 2007, 56(3): 1471-1475. doi: 10.7498/aps.56.1471
    [15] 董丽芳, 范伟丽, 李雪辰, 高瑞玲, 刘富成, 李树锋, 贺亚峰. 氩气放电中四边形发光斑图形成过程研究. 物理学报, 2006, 55(10): 5375-5379. doi: 10.7498/aps.55.5375
    [16] 刘艳红, 张家良, 王卫国, 李 建, 刘东平, 马腾才. CH4或CH4+Ar介质阻挡放电中的离子能量和类金刚石膜制备. 物理学报, 2006, 55(3): 1458-1463. doi: 10.7498/aps.55.1458
    [17] 董丽芳, 李树锋, 刘 峰, 刘富成, 刘书华, 范伟丽. 大气压氩气介质阻挡放电中的四边形斑图和六边形斑图. 物理学报, 2006, 55(1): 362-366. doi: 10.7498/aps.55.362
    [18] 董丽芳, 毛志国, 冉俊霞. 氩气介质阻挡放电不同放电模式的电学特性研究. 物理学报, 2005, 54(7): 3268-3272. doi: 10.7498/aps.54.3268
    [19] 贺亚峰, 董丽芳, 刘富成, 范伟丽. 介质阻挡放电中的局域态六边形结构. 物理学报, 2005, 54(9): 4236-4239. doi: 10.7498/aps.54.4236
    [20] 董丽芳, 李雪辰, 尹增谦, 王龙. 大气压介质阻挡放电中的自组织斑图结构. 物理学报, 2002, 51(10): 2296-2301. doi: 10.7498/aps.51.2296
计量
  • 文章访问数:  4539
  • PDF下载量:  882
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-25
  • 修回日期:  2012-04-05
  • 刊出日期:  2012-04-05

大气压介质阻挡放电超四边形斑图的等离子体参量

  • 1. 河北大学物理科学与技术学院, 保定 071002
    基金项目: 国家自然科学基金(批准号: 10975043),河北省自然科学基金(批准号: 2010000185),河北省教育厅重点项目(批准号: ZD2010140)和 2010年度高等学校博士学科点专项科研基金资助课题(批准号: 20101301110001)资助的课题.

摘要: 本工作利用双水电极介质阻挡放电装置,采用发射光谱方法,在大气压氩气介质阻挡放电中研究了由不同空间尺度 微放电通道构成的超四边形斑图的等离子体参量.实验发现直径较大的微放电通道(大点)和直径较小的微放电通道(小点)亮度不同.采用氮分子第二正带系谱线计算了分子振动温度,利用谱线强度比方法得到了电子激发温度,用氩原子696.54 nm谱线的Stark展宽估算了电子密度.结果显示小点的电子密度和分子振动温度均高于大点,而电子激发温度低于大点.这说明稳定超四边形斑图中不同尺度微放电的等离子体状态不同.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回