搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双气隙下介质阻挡放电斑图的放电特性与参数诊断

田爽 张寒 张喜 张雪雪 李雪辰 李庆 冉俊霞

引用本文:
Citation:

双气隙下介质阻挡放电斑图的放电特性与参数诊断

田爽, 张寒, 张喜, 张雪雪, 李雪辰, 李庆, 冉俊霞

Discharge characteristics and parameter diagnosis of dielectric barrier discharge patterns in double-gap configuration

TIAN Shuang, ZHANG Han, ZHANG Xi, ZHANG Xuexue, LI Xuechen, LI Qing, RAN Junxia
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 斑图放电是介质阻挡放电的重要模式之一, 在众多领域具有广泛的应用前景. 本工作在氩气/空气混合气体介质阻挡放电系统中, 采用正六边形和方形组成的双气隙边界, 通过改变实验参数, 获得了多个全新的复杂斑图. 利用光学与电学手段研究了其放电特性及其时间相关性. 结果表明放电斑图在每半个电压周期内均有多次放电并在时间上具有相关性. 利用增强型电荷耦合设备拍摄了方形点阵斑图时间分辨的放电图像, 发现半个电压周期内的多次放电其实是斑图在径向上从外向内逐渐点亮的过程, 理论分析了该斑图的形成机理. 采集了方形点阵斑图的发射光谱, 通过线比法和玻尔兹曼拟合法探究了方形点阵斑图的电子密度、电子温度、分子振动温度、分子转动温度的变化. 结果显示电子密度沿着径向方向从外到内逐渐减小, 电子温度与分子振动温度沿着径向方向从外到内逐渐增加, 分子转动温度几乎不变.
    Pattern discharge is a common mode in dielectric barrier discharge (DBD) and has broad application prospects in various industrial fields, such as material surface treatment, environmental monitoring, and biomedical applications. In this work, a mixed gas of 75% argon and 25% air is used to generate a pattern discharge. A double-gap boundary composed of hexagonal configuration and square configuration is employed, and the gas pressure is fixed at 20 kPa. By varying the applied voltage amplitude, single-ring pattern, square-point-line pattern, square lattice pattern, and annular-lattice pattern are obtained for the first time. The discharge characteristics and their temporal correlation are studied using both optical method and electrical method. The results show that the discharge patterns exhibit multiple discharges in each half of the voltage cycle, and these discharges are temporally correlated with each other. Time-resolved discharge images of the square lattice pattern are captured using an enhanced charge-coupled device (ICCD). The experimental results reveal that multiple discharges in a half-voltage cycle correspond to the ignition process of the pattern in the radial direction from the outside to the inside. The morphology of the square lattice pattern observed by the naked eye is actually the result of the temporal superposition of luminescence from points at different positions in the evolution process. The formation mechanism of this pattern is analyzed through electric field simulations and theoretical calculations. Plasma parameters are diagnosed by collecting the emission spectrum of the square dot-lattice pattern. The results show that the electron density gradually decreases radially from the outer region to the inner region, while the electron temperature and molecular vibrational temperature increase radially from the outer region to the inner region, and the molecular rotational temperature remains almost unchanged. The temporal evolution of the square lattice pattern is shown in the following figures, where the current waveform marks the timing of each frame of ICCD imaging for the complete square lattice pattern:
  • 图 1  (a)实验装置示意图; (b)气隙结构侧视图

    Fig. 1.  (a) Schematic diagram of the experimental setup; (b) side view of the gap structure.

    图 2  不同电压下斑图照片, 曝光时间为0.1 s

    Fig. 2.  Patterned discharges under different applied voltages with an exposure time of 0.1 s.

    图 3  不同斑图对应的电压与放电电流的波形图

    Fig. 3.  Waveforms of applied voltage and discharge current for different patterns.

    图 4  斑图的时间相关性 (a)—(d)分别对应图2(a)(d)

    Fig. 4.  Temporal correlation from the pattern: (a)–(d) Correspond to Fig. 2(a)-(d), respectively.

    图 5  方形点阵斑图的时间演化, 上方的电流波形中标示了各幅图对应的ICCD拍摄时刻, 曝光时间为20 ns (单次拍摄)

    Fig. 5.  Temporal evolution of the square lattice pattern. The current waveform shows the ICCD shooting time of each picture, and the exposure time is 20 ns (single shot).

    图 6  (a) 介质阻挡放电等效电路图; (b) 外加电场仿真结果

    Fig. 6.  (a) Equivalent circuit diagram of dielectric barrier discharge; (b) simulation results of applied electric field.

    图 7  (a) 300—800 nm放电的发射光谱; (b) $ {\text{N}}_{2}^{+} $(B-X)转动谱带拟合结果; (c)方形点阵斑图不同位置处的Tvib; (d)方形点阵斑图不同位置处的Tene

    Fig. 7.  (a) 300–800 nm optical emission spectrum from the discharge; (b) fitting result of rotational bands of the $ {\text{N}}_{2}^{+} $(B-X); (c) Tvib at different positions in the square lattice pattern; (d) Te and ne at different positions in square lattice pattern.

  • [1]

    Zhang J, Tang W W, Wang Y H, Wang D Z 2023 Plasma Sources Sci. Technol. 32 055005Google Scholar

    [2]

    Li J Y, Zhou D S, Rebrov E, Tang X, Kim M 2024 J. Phys. D: Appl. Phys. 57 395201Google Scholar

    [3]

    Fang J L, Zhang Y R, Lu C Z, Gu L L, Xu S F, Guo Y, Shi J J 2024 Chin. Phys. B 33 015201Google Scholar

    [4]

    Guan H L, Chen X R, Jiang T, Du H, Paramane A, Zhou H 2020 Chin. Phys. B 29 075204Google Scholar

    [5]

    Li X C, Liu R J, Li X N, Gao K, Wu J C, Gong D D, Jia P Y 2019 Phys. Plasmas 26 023510Google Scholar

    [6]

    Remy A, Geyter N D, Reniers F 2023 Plasma Process. Polym. 20 2200201Google Scholar

    [7]

    Hosseini H 2023 RSC Adv. 13 28211Google Scholar

    [8]

    Li Y W, Yuan H, Zhou X F, Liang J P, Liu Y Y, Chang D L, Yang, D Z 2022 Catalysts 12 203Google Scholar

    [9]

    Song H, Dang Y M, Ki S H, Park S, Ha J H 2024 LWT 207 116637Google Scholar

    [10]

    Domonkos M, Tichá P, Trejbal J, Demo P 2021 Appl. Sci. 11 4809Google Scholar

    [11]

    Massines F, Sarra-Bournet C, Fanelli F, Naudé N, Gherardi N 2012 Plasma Process. Polym. 9 1041Google Scholar

    [12]

    Akishev Y, Alekseeva T, Karalnik V, Petryakov A 2022 Plasma Sources Sci. Technol. 31 084001Google Scholar

    [13]

    Tschiersch R, Nemschokmichal S, Bogaczyk M, Meichsner J 2017 J. Phys. D: Appl. Phys. 50 415206Google Scholar

    [14]

    刘凯, 方泽, 戴栋 2023 物理学报 72 135201Google Scholar

    Liu K, Fang Z, Dai D 2023 Acta Phys. Sin. 72 135201Google Scholar

    [15]

    Ran J X, Zhang X X, Zhang Y, Wu K Y, Zhao N, He X R, Dai X H, Liang Q H, Li X C 2023 Plasma Sci. Technol. 25 055403Google Scholar

    [16]

    Lu X P, Fang Z, Dai D, Shao T, Liu F, Zhang C, Liu D W, Nie L L, Jiang C Q 2023 High Volt. 8 1132Google Scholar

    [17]

    Brandenburg R 2018 Plasma Sources Sci. Technol. 26 053001

    [18]

    Wang Y Y, Yan H J, Li T, Bai X D, Wang X, Song J, Zhang Q Z 2023 AIP Adv. 13 085327Google Scholar

    [19]

    万海容, 郝艳捧, 房强, 苏恒炜, 阳林, 李立浧 2020 物理学报 69 145203Google Scholar

    Wang H R, Hao Y P, Fang Q, Su H W, Yang L, Li L C 2020 Acta Phys. Sin. 69 145203Google Scholar

    [20]

    Wu K Y, Wu J C, Jia B Y, Ren C H, Kang P C, Jia P Y, Li X C 2020 Phys. Plasmas 27 082308Google Scholar

    [21]

    Ouyang J T, Li B, He F, Dai D 2018 Plasma Sci. Technol 20 103002Google Scholar

    [22]

    Hao Y P, Han Y Y, Huang Z M, Yang L, Dai D, Li L C 2018 Phys. Plasmas 25 013516Google Scholar

    [23]

    Li X C, Liu R, Jia P Y, Wu K Y, Ren C H, Yin Z Q 2018 Phys. Plasmas 25 013512Google Scholar

    [24]

    Li Z Y, Jin S H, Xian Y B, Nie L L, Liu D W, Lu X P 2021 Plasma Sources Sci. Technol. 30 065026Google Scholar

    [25]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. Technol. 28 075003Google Scholar

    [26]

    Zhang J H, Pan Y Y, Feng J Y, He Y N, Chu J H, Dong L F 2023 Plasma Sci. Technol. 25 025406Google Scholar

    [27]

    Duan X X, Ouyang J T, Zhao X F, He F 2009 Phys. Rev. E 80 016202Google Scholar

    [28]

    Wang X, Yan H J, Wang Y Y, Yu S Q, Li T, Song J 2023 J. Phys. D: Appl. Phys. 56 105201Google Scholar

    [29]

    Mokrov M S, Raizer Y P 2018 Plasma Sources Sci. Technol 27 065008Google Scholar

    [30]

    Hao F, Dong L F, Du T, Liu Y, Fan W L, Pan Y Y 2018 Phys. Plasmas 25 033510Google Scholar

    [31]

    Han R, Dong L F, Huang J Y, Sun H Y, Liu B B, Mi Y L 2019 Chin. Phys. B 28 075204Google Scholar

    [32]

    Sun H Y, Dong L F, Liu F C, Mi Y L, Han R, Huang J Y, Liu B B, Hao F, Pan Y Y 2018 Phys. Plasmas 25 113507Google Scholar

    [33]

    Wei L Y, Dong L F, Fan W L, Liu F C, Feng J Y, Pan Y Y 2018 Sci. Rep. 8 3835Google Scholar

    [34]

    Feng J Y, Dong L F, Wei L Y, Fan W L, Li C X, Pan Y Y 2016 Phys. Plasmas 23 093502Google Scholar

    [35]

    Pan Y Y, Li Y H, Dou Y Y, Fu G S, Dong L F 2022 Phys. Plasmas 29 053502Google Scholar

    [36]

    Liu F C, Liu Y N, Liu Q, Wu Z C, Liu Y H, Gao K Y, He Y F, Fan W L, Dong L F 2022 Plasma Sources Sci. Technol 31 025015Google Scholar

    [37]

    Li C X, Dong L F, Feng J Y, Huang Y P 2019 Phys. Plasmas 26 023505Google Scholar

    [38]

    Pan Y Y, Feng J Y, Li C X, Dong L F 2022 Plasma Sci. Technol. 24 115401Google Scholar

    [39]

    Li Y H, Pan Y Y, Tian M, Wang Y, He Y N, Zhang J H, Chu J H, Dong L F 2023 Phys. Plasmas 30 033502Google Scholar

    [40]

    Liu S H, Neiger M 2003 J. Phys. D: Appl. Phys. 36 3144Google Scholar

    [41]

    Bruggeman P J, Sadeghi N, Schram D C, Linss V 2014 Plasma Sources Sci. Technol. 23 023001Google Scholar

    [42]

    Yang F X, Mu Z X, Zhang J L 2016 Plasma Sci. Technol. 18 79Google Scholar

    [43]

    Zhu X M, Pu Y K 2008 Plasma Sources Sci. Technol. 17 024002Google Scholar

  • [1] 万海容, 郝艳捧, 房强, 苏恒炜, 阳林, 李立浧. 大气压氦气介质阻挡放电单-多柱演化动力学. 物理学报, doi: 10.7498/aps.69.20200473
    [2] 戴栋, 王其明, 郝艳捧. 大气压氦气介质阻挡放电中的周期一不对称放电实验研究. 物理学报, doi: 10.7498/aps.62.135204
    [3] 程钰锋, 聂万胜, 车学科, 田希晖, 侯志勇, 周鹏辉. 不同压力下介质阻挡放电等离子体诱导流场演化的实验研究. 物理学报, doi: 10.7498/aps.62.104702
    [4] 董丽芳, 李树峰, 范伟丽. 介质阻挡放电丝结构转变中的缺陷研究. 物理学报, doi: 10.7498/aps.60.065205
    [5] 董丽芳, 岳晗, 范伟丽, 李媛媛, 杨玉杰, 肖红. 介质阻挡放电跃变升压模式下靶波斑图研究. 物理学报, doi: 10.7498/aps.60.065206
    [6] 董丽芳, 杨玉杰, 范伟丽, 岳晗, 王帅, 肖红. 介质阻挡放电中放电丝结构相变过程研究. 物理学报, doi: 10.7498/aps.59.1917
    [7] 梁卓, 罗海云, 王新新, 关志成, 王黎明. 气流对氮气介质阻挡放电气体温度及放电模式的影响. 物理学报, doi: 10.7498/aps.59.8739
    [8] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究. 物理学报, doi: 10.7498/aps.59.8747
    [9] 董丽芳, 谢伟霞, 赵海涛, 范伟丽, 贺亚峰, 肖红. 氩气/空气介质阻挡放电自组织超六边形斑图实验研究. 物理学报, doi: 10.7498/aps.58.4806
    [10] 董丽芳, 王红芳, 刘微粒, 贺亚峰, 刘富成, 刘书华. 介质阻挡放电中电介质参量对放电时间特性的影响. 物理学报, doi: 10.7498/aps.57.1802
    [11] 李雪辰, 贾鹏英, 刘志辉, 李立春, 董丽芳. 介质阻挡放电丝模式和均匀模式转化的特性. 物理学报, doi: 10.7498/aps.57.1001
    [12] 尹增谦, 万景瑜, 黄明强, 王慧娟. 介质阻挡放电中的能量转换过程研究. 物理学报, doi: 10.7498/aps.56.7078
    [13] 董丽芳, 高瑞玲, 贺亚峰, 范伟丽, 李雪辰, 刘书华, 刘微粒. 介质阻挡放电斑图中放电通道的相互作用研究. 物理学报, doi: 10.7498/aps.56.1471
    [14] 董丽芳, 刘书华, 王红芳, 范伟丽, 高瑞玲, 郝雅娟. 介质阻挡放电中两种不同时空对称性的六边形发光斑图. 物理学报, doi: 10.7498/aps.56.3332
    [15] 欧阳吉庭, 何 锋, 缪劲松, 冯 硕. 共面介质阻挡放电特性研究. 物理学报, doi: 10.7498/aps.55.5969
    [16] 王艳辉, 王德真. 介质阻挡均匀大气压氮气放电特性研究. 物理学报, doi: 10.7498/aps.55.5923
    [17] 董丽芳, 毛志国, 冉俊霞. 氩气介质阻挡放电不同放电模式的电学特性研究. 物理学报, doi: 10.7498/aps.54.3268
    [18] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟. 物理学报, doi: 10.7498/aps.54.4808
    [19] 尹增谦, 王 龙, 董丽芳, 李雪辰, 柴志方. 介质阻挡放电中微放电的映射方程. 物理学报, doi: 10.7498/aps.52.929
    [20] 董丽芳, 李雪辰, 尹增谦, 王龙. 大气压介质阻挡放电中的自组织斑图结构. 物理学报, doi: 10.7498/aps.51.2296
计量
  • 文章访问数:  275
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-24
  • 修回日期:  2025-03-27
  • 上网日期:  2025-04-08

/

返回文章
返回