搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稠密等离子体焦点运动过程的理论和数值研究

孙强 董烨 杨薇 张含天 宋萌萌 刘朝晖 王子鸣 周前红

引用本文:
Citation:

稠密等离子体焦点运动过程的理论和数值研究

孙强, 董烨, 杨薇, 张含天, 宋萌萌, 刘朝晖, 王子鸣, 周前红

Theoretical and numerical studies on motion process of dense plasma focus

SUN Qiang, DONG Ye, YANG Wei, ZHANG Hantian, SONG Mengmeng, LIU Zhaohui, WANG Ziming, ZHOU Qianhong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 稠密等离子体焦点(DPF)是一种脉冲强流放电装置, 在粒子加速器、受控核聚变、空间推进及脉冲中子源等领域有着广泛应用. 本文采用耦合外电路的双温磁流体动力学模型, 研究了DPF的轴向加速和径向内爆过程, 并探讨了装置参数对等离子体运动的影响规律. 首先, 通过与实验结果的对比, 验证了双温磁流体模型的准确性. 然后针对DPF装置开展了物理过程及规律的理论和模拟研究. 研究表明在洛伦兹力的作用下, DPF等离子体鞘沿轴向不断加速, 到达内电极末端后部分等离子体沿径向向内压缩, 最终在对称轴上形成高温高密等离子体. 对于大型DPF装置, 增加电路电压能显著提升电流水平; 同时阴阳极半径之比应尽可能小, 这可以在其他参数不变的情况下, 有效提高DPF的峰值电流和箍缩电流.
    Dense plasma focus (DPF) device is a pulsed high current discharge device, which is widely used in particle accelerator, controlled nuclear fusion, space propulsion, and pulsed neutron source. However, existing models for DPF dynamics, including semi-empirical snowplow approximations and particle-in-cell (PIC) methods, face limitations in balancing computational efficiency and comprehensive physical descriptions. In contrast, magnetohydrodynamic (MHD) models can comprehensively analyze the macroscopic phenomena (e.g. sheath motion, current distribution, fluid instabilities) and the influence of parameters (e.g. electrode geometry, gas pressure, and driving current waveforms) on DPF performance. Although MHD cannot self-consistently resolve kinetic behaviors like high-energy particle beams or neutron production during pinch phases, it remains highly valuable for investigating macroscopic DPF physics when quantitative neutron yield analysis is unnecessary. Therefore, a two-temperature MHD model coupled with an external RLC circuit is developed in this paper, which combines electron-ion thermal nonequilibrium, resistive effects, and plasma transport coefficients derived from Braginskii formulations. The model is rigorously validated based on experimental data from two benchmark DPF devices (UNU and UDMPF1), demonstrating high consistency in current waveform, voltage profile, and radial implosion trajectory. The research shows that the DPF plasma sheath is continuously accelerated along the axial direction under the action of the Lorentz force. When it moves to the end of the inner electrode, due to Z-pinch effect, the plasma sheath bends radially inward and is further compressed onto the axis of symmetry, finally forming a high-temperature and high-density plasma region in front of the inner electrode end, the so-called plasma focus. For the UNU device, simulations reveal distinct plasma evolution phases. One is the axial acceleration (0–2.5 μs), where the current sheath reaches a speed of up to 90 km/s under the dominance of Lorentz force, with ion temperatures rising from 1 eV to 100 eV, and the other is the radial implosion (2.78–2.90 μs), during which plasma density increases by an order of magnitude (reaching to ~1024 m–3) and ion temperature surges to ~1 keV through magnetically driven compression. Further studies also find that for large DPF devices, with the inductance reduced and the capacitance increased, the circuit current is easily saturated. However, increasing the circuit voltage has a more significant effect on the increase of current. This paper shows that for large DPF devices, the ratio of anode radius to cathode radius needs to be as small as possible, which can increase the peak current and pinch current of DPF while keeping other parameters unchanged.
  • 图 1  DPF装置基本结构

    Fig. 1.  The basic structure of the DPF device.

    图 2  DPF计算域示意图

    Fig. 2.  Schematic diagram of the DPF computational domain.

    图 3  计算的电流(UNU装置)

    Fig. 3.  The calculated current of UNU device.

    图 4  径向时刻的计算电压(UNU装置)

    Fig. 4.  The calculated voltage at radial time of UNU device.

    图 5  径向阶段轨迹对比(UDMPF1装置)

    Fig. 5.  The comparison of radial phase trajectories of UDMPF1 device.

    图 6  不同时刻的离子温度分布(轴向阶段)

    Fig. 6.  Ion temperature distribution at different times (axial phase).

    图 7  不同时刻的离子温度分布(径向阶段)

    Fig. 7.  Ion temperature distribution at different times (radial phase).

    图 8  不同时刻的离子数密度分布

    Fig. 8.  Ion number density distribution at different times.

    图 9  不同时刻的离子速度分布

    Fig. 9.  Ion velocity distribution at different times.

    图 10  轴向阶段电流变化(其他参数不变, 只改变阴极径)

    Fig. 10.  The current change at axial phase (other parameters remain unchanged, only the cathode radius is changed).

  • [1]

    Filippov N, Filippova T, Vinogradov V 1962 Nucl. Fusion 2 577

    [2]

    Mather J 1964 Phys. Fluids 7 S28Google Scholar

    [3]

    Khan I, Jabbar S, Hussain T 2010 Nucl. Instrum. Methods Phys. Res. 268 2228Google Scholar

    [4]

    Khan K, Ahmad R, Hussain T 2022 Radiat. Eff. Defects Solids 177 892Google Scholar

    [5]

    Rawat R 2015 J. Phys. Conf. Ser 591 012021Google Scholar

    [6]

    Soto L 2005 Plasma Phys. Control. Fusion 47 A361Google Scholar

    [7]

    Tang V, Adams M, Rusnak B 2010 IEEE Trans. Plasma Sci. 38 719Google Scholar

    [8]

    Temple B, Barnouin O, Miley G H 1991 Fusion Sci. Technol. 19 846Google Scholar

    [9]

    Thomas R, Yang Y, Miley G 2005 AIP Conf. Proc. 746 536Google Scholar

    [10]

    Auluck S 2023 Phys. Plasmas 30 043109Google Scholar

    [11]

    Gribkov V, Latyshev S, Miklaszewski R 2010 Phys. Scr. 81 035502Google Scholar

    [12]

    Verma R, Roshan M, Malik F 2008 Plasma Sources Sci. Technol. 17 045020Google Scholar

    [13]

    Lerner E J, Hassan S M, Karamitsos Z I, Fritsch R 2023 J. Fusion Energy 42 7Google Scholar

    [14]

    Bennett N, Blasco M, Breeding K, et al, 2016 Source and Diagnostic Development for a Neutron Diagnosed Subcritical Experiment North Las Vegas, NV (United States

    [15]

    Bennett N, Blasco M, Constantino D 2016 Dense Plasma Focus Experimental Results and Plans for NDSE North Las Vegas, NV (United States

    [16]

    Krishnan M 2012 IEEE Trans. Plasma Sci. 40 3189Google Scholar

    [17]

    Bernard A, Coudevilie A, Jolas A 1975 Phys. Fluids 18 180Google Scholar

    [18]

    Sadowski M, Herold H, Schmidt H 1984 Phys. Lett. A 105 117Google Scholar

    [19]

    Decker G, Kies W, Nadolny R 1996 Plasma Sources Sci. Technol. 5 112Google Scholar

    [20]

    Brzosko J S, Robouch B, Klobukowska J 1987 Fusion Sci. Technol. 12 71Google Scholar

    [21]

    Gribkov V, Bienkowska B, Borowiecki M, Dubrovsky A V, Ivanova-Stanik I, Karpinski L, Miklaszewski R A, Paduch M, Scholz M, Tomaszewski K 2007 J. Phys. D: Appl. Phys. 40 1977Google Scholar

    [22]

    浓密等离子体焦点研究小组 1975 物理学报 24 309Google Scholar

    Dense Plasma Focus Group 1975 Acta Phys. Sin. 24 309Google Scholar

    [23]

    吕铭方, 韩旻, 杨津基, 王新新 1996 清华大学学报 5 36

    Lv M F, Han Y, Yang J J, Wang X X 1996 Tsinghua Sci. Technol. 5 36

    [24]

    王新新, 韩旻, 王志文, 刘坤 1999 中国科学 29 76

    Wang X X, Han Y, Wang Z W, Liu K 1999 Sci. China 29 76

    [25]

    张贵新, 罗承沐, 王新新等 2002 高电压技术 28 32Google Scholar

    Zhang G X, Luo C M, Wang X X 2002 High Volt. Eng. 28 32Google Scholar

    [26]

    韩旻, 罗承沐, 王克超 1995 强激光与粒子束 7 461

    Han Y, Luo C M, Wang K C 1995 High Power Laser Part. Beams 7 461

    [27]

    龙继东, 陈林, 丰树平 2019 高能量密度物理 2 42

    Long J D, Chen L, Feng S P, 2019 High Energy Dens. Phys. 2 42

    [28]

    陈林, 丰树平, 高顺受 2004 中国科学 34 458

    Chen L, Feng S P, Gao S S 2004 Sci. China 34 458

    [29]

    李名加, 范娟, 章法强 2018 强激光与粒子束 30 129Google Scholar

    Li M J, Fan J, Zhang F Q 2018 High Power Laser Part. Beams 30 129Google Scholar

    [30]

    郭洪生, 杨高照, 朱学彬 2012 核电子学与探测技术 32 880Google Scholar

    Guo H S, Yang G Z, Zhu X B 2012 Nucl. Electron. Detection Tech. 32 880Google Scholar

    [31]

    Xi H, Liang C, Zhang F 2021 J. Instrum. 16 P12021Google Scholar

    [32]

    谈效华, 戴晶怡, 米伦, 黄华国, 谢超美, 周明贵 2004 第三届北京核学会核应用技术学术交流会

    Tan X H, Dai J Y, Mi L, Huang H G, Xie C M, Zhou M G 2004 The 3rd Beijing Nuclear Society Nuclear Application Technology Academic Exchange meeting

    [33]

    Haines M 2011 Plasma Phys. Control. Fusion 53 093001Google Scholar

    [34]

    Auluck S, Kunes P, Paduch M, Sadowski M J, Krauz V I, Lee S, Soto L, Scholz M, Miklaszewski R, Schmidt H, Blagoev A, Samuelli M, Seng Y S, Springham S V, Talebitaher A, Pavez C, Akel M, Yap S L, Verma R, Kolacek, Keat P L C, Rawat R S, Abdou A, Zhang G X, Laas T 2021 Plasma 4 450Google Scholar

    [35]

    Hart P J 1962 Phys. Fluids 5 38Google Scholar

    [36]

    Lee S 2014 J. Fusion Energy 33 319Google Scholar

    [37]

    Potter D 1971 Phys. Fluids 14 1911Google Scholar

    [38]

    Garanin S F, Mamyshev V I 2008 Plasma Phys. Rep. 34 639Google Scholar

    [39]

    Meehan B T, Niederhau H 2016 JDMS 13 153

    [40]

    Schmidt A, Tang V, Welch D 2012 Phys. Rev. Lett. 109 205003Google Scholar

    [41]

    Schmidt A, Link A, Welch D 2014 Phys. Plasmas 21 102703Google Scholar

    [42]

    Angus J, Link A, Schmid A 2021 Phys. Plasmas 28 010701Google Scholar

    [43]

    刘全 2002 博士学位论文(北京: 中国工程物理研究院研究生院)

    Liu Q 2002, Ph. D. Dissertation (Beijing: Graduate School of China Academy of Engineering Physics

    [44]

    Braginskii S 1965 Rev. Plasma Phys. 1 205

    [45]

    Lim L H, Yap S, Lim L K, Lee M C, Poh H S, Ma J, Yap S S, Lee S 2015 Phys. Plasmas 22 092702Google Scholar

  • [1] 李尚卿, 王伟民, 李玉同. 基于OpenFOAM的磁流体求解器的开发和应用. 物理学报, doi: 10.7498/aps.71.20212432
    [2] 王亚楠, 任林渊, 丁卫东, 孙安邦, 耿金越. 腔体结构参数对毛细管放电型脉冲等离子体推力器放电特性的影响. 物理学报, doi: 10.7498/aps.70.20211198
    [3] 章征伟, 王贵林, 张绍龙, 孙奇志, 刘伟, 赵小明, 贾月松, 谢卫平. 电作用量在磁驱动固体套筒内爆设计分析中的应用. 物理学报, doi: 10.7498/aps.69.20191690
    [4] 原晓霞, 仲佳勇. 双等离子体团相互作用的磁流体力学模拟. 物理学报, doi: 10.7498/aps.66.075202
    [5] 杨政权, 李成, 雷奕安. 锥形腔等离子体压缩的磁流体模拟. 物理学报, doi: 10.7498/aps.65.205201
    [6] 高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛. Z箍缩Al等离子体X特征辐射谱线数值模拟及考虑叠加效应后的修正. 物理学报, doi: 10.7498/aps.63.125202
    [7] 丰志兴, 宁成, 薛创, 李百文. 基于等离子体粒子模拟的喷气Z箍缩过程物理研究. 物理学报, doi: 10.7498/aps.63.185203
    [8] 周林, 薛飞彪, 司粉妮, 杨建伦, 叶凡, 徐荣昆, 胡青元, 甫跃成, 蒋树庆, 李林波, 陈进川, 徐泽平. Z箍缩等离子体电流分布实验研究. 物理学报, doi: 10.7498/aps.61.195207
    [9] 高启, 吴泽清, 张传飞, 李正宏, 徐荣昆, 祖小涛. Z箍缩Al等离子体发射谱的非局域平衡模拟. 物理学报, doi: 10.7498/aps.61.015201
    [10] 吴刚, 邱爱慈, 王亮平, 吕敏, 邱孟通, 丛培天. 双层喷气Z箍缩氖等离子体K层辐射研究. 物理学报, doi: 10.7498/aps.60.015203
    [11] 董克攻, 吴玉迟, 郑无敌, 朱斌, 曹磊峰, 何颖玲, 马占南, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 魏来, 臧华平, 余金清, 谷渝秋, 张保汉, 王晓方. 充气型放电毛细管的密度测量及磁流体模拟. 物理学报, doi: 10.7498/aps.60.095202
    [12] 黄俊, 孙顺凯, 肖德龙, 丁宁, 宁成, 张扬, 薛创. 丝阵Z箍缩早期消融等离子体动力学的二维数值模拟研究. 物理学报, doi: 10.7498/aps.59.6351
    [13] 叶 凡, 薛飞彪, 郭 存, 李正宏, 杨建伦, 徐荣昆, 章法强, 金永杰. 利用凸晶摄谱仪获取Z箍缩等离子体X辐射单色图像. 物理学报, doi: 10.7498/aps.57.1792
    [14] 张 扬, 丁 宁. 轴向流对Z箍缩等离子体稳定性的影响. 物理学报, doi: 10.7498/aps.55.2333
    [15] 邱爱慈, 蒯 斌, 曾正中, 王文生, 邱孟通, 王亮平, 丛培天, 吕 敏. “强光一号”钨丝阵Z箍缩等离子体辐射特性研究. 物理学报, doi: 10.7498/aps.55.5917
    [16] 邹晓兵, 王新新, 罗承沐, 韩 旻. 喷气式Z箍缩等离子体发射离子束能谱的研究. 物理学报, doi: 10.7498/aps.54.2133
    [17] 段耀勇, 郭永辉, 王文生, 邱爱慈. Z箍缩等离子体不稳定性的数值研究. 物理学报, doi: 10.7498/aps.53.3429
    [18] 段耀勇, 郭永辉, 王文生, 邱爱慈. 钨丝阵等离子体Z箍缩的数值模拟. 物理学报, doi: 10.7498/aps.53.2654
    [19] 李玉同, 张 杰, 陈黎明, 夏江帆, 腾 浩, 魏志义, 江文勉. 对飞秒激光等离子体相互作用中横向箍缩的观察. 物理学报, doi: 10.7498/aps.49.1400
    [20] 浓密等离子体焦点研究小组. 浓密等离子体焦点的研究. 物理学报, doi: 10.7498/aps.24.309
计量
  • 文章访问数:  291
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-12
  • 修回日期:  2025-03-24
  • 上网日期:  2025-04-14

/

返回文章
返回