搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稠密等离子体焦点运动过程的理论和数值研究

孙强 董烨 杨薇 张含天 宋萌萌 刘朝晖 王子鸣 周前红

引用本文:
Citation:

稠密等离子体焦点运动过程的理论和数值研究

孙强, 董烨, 杨薇, 张含天, 宋萌萌, 刘朝晖, 王子鸣, 周前红

Theoretical and numerical studies on the motion process of dense plasma focus

Sun Qiang, Dong Ye, Yang Wei, Zhang Han-Tian, Song Meng-Meng, Liu Zhao-Hui, Wang Zi-Ming, Zhou Qian-Hong
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 稠密等离子体焦点(DPF)是一种脉冲强流放电装置,在粒子加速器、受控核聚变、空间推进及脉冲中子源等领域有着广泛应用。本文采用耦合外电路的双温磁流体动力学模型,研究了DPF的轴向加速和径向内爆过程,并探讨了装置参数对等离子体运动的影响规律。首先,通过与实验结果的对比,验证了双温磁流体模型的准确性。然后针对DPF装置开展了物理过程及规律的理论和模拟研究。研究表明在洛伦兹力的作用下,DPF等离子体鞘沿轴向不断加速,到达内电极末端后部分等离子体沿径向向内压缩,最终在对称轴上形成高温高密等离子体。对于大型DPF装置,增加电路电压能显著提升电流水平;同时阴阳极半径之比应尽可能小,这可以在其他参数不变的情况下,有效提高DPF的峰值电流和箍缩电流。
    Dense plasma focus (DPF) is a pulsed high current discharge device, which is widely used in particle accelerator, controlled nuclear fusion, space propulsion and pulsed neutron source. However, existing models for DPF dynamics, including semi-empirical snowplow approximations and particle-in-cell (PIC) methods, face limitations in balancing computational efficiency with comprehensive physical descriptions. In contrast, magnetohydrodynamic (MHD) models enable comprehensive analysis of macroscopic phenomena (e.g., sheath motion, current distribution, fluid instabilities) and parametric impacts (e.g., electrode geometry, gas pressure, driving current waveforms) on DPF performance. Although MHD cannot self-consistently resolve kinetic behaviors like high-energy particle beams or neutron production during pinch phases, it remains highly valuable for investigating macroscopic DPF physics when quantitative neutron yield analysis is unnecessary. Therefore, a two-temperature MHD model coupled with an external RLC circuit is developed in this paper, incorporating electron-ion thermal nonequilibrium, resistive effects, and plasma transport coefficients derived from Braginskii formulations. The model is rigorously validated against experimental data from two benchmark DPF devices (UNU and UDMPF1), demonstrating excellent agreement in current waveform, voltage profile, and radial implosion trajectory. The research shows that the DPF plasma sheath is continuously accelerated along the axial direction under the action of the Lorentz force. When it moves to the end of the inner electrode, the plasma sheath bends radially inward and is eventually compressed on the symmetry axis to form high-temperature and high-density plasma. For the UNU device, simulations reveal distinct plasma evolution phases: (1) Axial acceleration (0–2.5 μs), where the current sheath attains velocities up to 90 km/s under Lorentz force dominance, with ion temperatures rising from 1 eV to 100 eV. (2) Radial implosion (2.78–2.90 μs), during which plasma density increases by an order of magnitude (to ~10²⁴ m⁻³) and ion temperatures surge to ~1 keV through magnetically driven compression. Further studies also find that for large DPF devices, reducing the inductance and increasing the capacitance, the circuit current is prone to saturation; while increasing the circuit voltage has a more significant effect on the current increase. This paper shows that for large DPF devices, the ratio of the anode radius to cathode radius needs to be as small as possible, which can increase the peak current and pinch current of DPF as much as possible under the condition that other parameters remain unchanged.
  • [1]

    Filippov N, Filippova T, Vinogradov V 1962 Nucl. Fusion 2 577-587

    [2]

    Mather J 1964 Phys. Fluids 7(11) S28-S34

    [3]

    Khan I, Jabbar S, Hussain T 2010 Nucl. Instrum. Methods Phys. Res. 268(13) 2228-2234

    [4]

    Khan K, Ahmad R, Hussain T 2022 Radiat. Eff. Defects Solids 177 892-902

    [5]

    Rawat R 2015 J. Phys. Conf. Ser 591 012021

    [6]

    Soto L 2005 Plasma Phys. Control. Fusion 47(5A) A361

    [7]

    Tang V, Adams M, Rusnak B 2010 IEEE Trans. Plasma Sci. 38(4) 719-727

    [8]

    Temple B, Barnouin O, Miley G H 1991 Fusion Sci. Technol. 19 846–851

    [9]

    Thomas R, Yang Y, Miley G 2005 AIP Conf. Proc. 746 536-543

    [10]

    Auluck S 2023 Phys. Plasmas 30 043109

    [11]

    Gribkov V, Latyshev S, Miklaszewski R 2010 Phys. Scr. 81 035502

    [12]

    Verma R, Roshan M, Malik F 2008 Plasma Sources Sci. Technol. 17 045020

    [13]

    Lerner E J, Hassan S M, Karamitsos Z I, Fritsch R 2023 J. Fusion Energy 42(1) 7

    [14]

    Bennett N, Blasco M, Breeding K, et al, 2016 Source and Diagnostic Development for a Neutron Diagnosed Subcritical Experiment North Las Vegas, NV (United States)

    [15]

    Bennett N, Blasco M, Constantino D 2016 Dense Plasma Focus Experimental Results and Plans for NDSE North Las Vegas, NV (United States)

    [16]

    Krishnan M 2012 IEEE Trans. Plasma Sci. 40(12) 3189-3221

    [17]

    Bernard A, Coudevilie A, Jolas A 1975 Phys. Fluids 18(2) 180-194

    [18]

    Sadowski M, Herold H, Schmidt H 1984 Phys. Lett. A 105(3) 117-123

    [19]

    Decker G, Kies W, Nadolny R 1996 Plasma Sources Sci. Technol. 5(1) 112

    [20]

    Brzosko J S, Robouch B, Klobukowska J 1987 Fusion Sci. Technol. 12(1) 71-91

    [21]

    Gribkov V Bienkowska B, Borowiecki M, et al, 2007 J. Phys. D: Appl. Phys. 40 1977-1989

    [22]

    Dense Plasma Focus Group 1975 Acta Phys. Sin. 24 309-316 (in Chinese) (浓密等离子体焦点研究小组 1975 物理学报 24 309-316)

    [23]

    Lv M F, Han Y, Yang J J, Wang X X 1996 Tsinghua Sci. Technol. 5 36-41 (in Chinese) (吕铭方, 韩旻, 杨津基, 王新新 1996清华大学学报 5 36-41)

    [24]

    Wang X X, Han Y, Wang Z W, Liu K 1999 Sci. China 29 76-81 (in Chinese) (王新新, 韩旻, 王志文, 刘坤 1999 中国科学 29 76-81)

    [25]

    Zhang G X, Luo C M, Wang X X 2002 High Volt. Eng. 28(B12) 32-34 (in Chinese) (张贵新, 罗承沐, 王新新等2002高电压技术 28(B12) 32-34)

    [26]

    Han Y, Luo C M, Wang K C 1995 High Power Laser and Particle Beams 7 461-466 (in Chinese) (韩旻, 罗承沐, 王克超 1995 强激光与粒子束 7 461-466)

    [27]

    Long J D, Chen L, Feng S P, 2019 High Energy Density Physics 2 42-52 (in Chinese) (龙继东, 陈林,丰树平 2019 高能量密度物理 2 42-52)

    [28]

    Chen L, Feng S P, Gao S S 2004 Sci. China 34 458-465 (in Chinese) (陈林, 丰树平, 高顺受 2004 中国科学34 458-465)

    [29]

    Li M J, Fan J, Zhang F Q 2018 High Power Laser and Particle Beams 30129-133 (in Chinese) (李名加, 范娟, 章法强 2018 强激光与粒子束 30 129-133)

    [30]

    Guo H S, Yang G Z, Zhu X B 2012 Nuclear Electronics and Detection Technology 32 880-884 (in Chinese) (郭洪生, 杨高照, 朱学彬 2012 核电子学与探测技术32 880-884)

    [31]

    Xi H, Liang C, Zhang F 2021 J. Instrum. 16(12) P12021

    [32]

    Tan X H, Dai J Y, Mi L, Huang H G, Xie C M, Zhou M G 2004 The 3rd Beijing Nuclear Society Nuclear Application Technology Academic Exchange meeting (in Chinese) (谈效华, 戴晶怡, 米伦,黄华国,谢超美,周明贵 2004 第三届北京核学会核应用技术学术交流会)

    [33]

    Haines M 2011 Plasma Phys. Control. Fusion 53(9): 093001

    [34]

    Auluck S, Kunes P, Paduch M et al, 2021 Plasma 4(3) 450-669

    [35]

    Hart P J 1962 Phys. Fluids 5(1) 38-47

    [36]

    Lee S 2014 J. Fusion Energy 33(4) 319-335

    [37]

    Potter D 1971 Phys. Fluids 14(9) 1911-1924

    [38]

    Garanin S F, Mamyshev V I, 2008 Plasma Phys. Rep. 34 639-649

    [39]

    Meehan B T, Niederhau H, 2016 The Journal of Defense Modeling and Simulation: Applications Methodology Technology 13 153–160

    [40]

    Schmidt A, Tang V and Welch D 2012 Phys. Rev. Lett. 109 205003

    [41]

    Schmidt A, Link A and Welch D 2014 Phys. Plasmas 21 102703

    [42]

    Angus J, Link A and Schmid A 2021 Phys. Plasmas 28 010701

    [43]

    Liu Q 2002, Ph. D. Dissertation (Beijing: Graduate School of China Academy of Engineering Physics) (in Chinese) [刘全 2002 博士学位论文(北京:中国工程物理研究院研究生院)]

    [44]

    Braginskii S 1965 Rev. Plasma Phys. 1 205

    [45]

    Lim L H, Yap S, Lim L K, Lee M C, Poh H S, Ma J, Yap S S, Lee S 2015 Phys. Plasmas 22 092702

  • [1] 李尚卿, 王伟民, 李玉同. 基于OpenFOAM的磁流体求解器的开发和应用. 物理学报, doi: 10.7498/aps.71.20212432
    [2] 王亚楠, 任林渊, 丁卫东, 孙安邦, 耿金越. 腔体结构参数对毛细管放电型脉冲等离子体推力器放电特性的影响. 物理学报, doi: 10.7498/aps.70.20211198
    [3] 章征伟, 王贵林, 张绍龙, 孙奇志, 刘伟, 赵小明, 贾月松, 谢卫平. 电作用量在磁驱动固体套筒内爆设计分析中的应用. 物理学报, doi: 10.7498/aps.69.20191690
    [4] 原晓霞, 仲佳勇. 双等离子体团相互作用的磁流体力学模拟. 物理学报, doi: 10.7498/aps.66.075202
    [5] 杨政权, 李成, 雷奕安. 锥形腔等离子体压缩的磁流体模拟. 物理学报, doi: 10.7498/aps.65.205201
    [6] 高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛. Z箍缩Al等离子体X特征辐射谱线数值模拟及考虑叠加效应后的修正. 物理学报, doi: 10.7498/aps.63.125202
    [7] 丰志兴, 宁成, 薛创, 李百文. 基于等离子体粒子模拟的喷气Z箍缩过程物理研究. 物理学报, doi: 10.7498/aps.63.185203
    [8] 周林, 薛飞彪, 司粉妮, 杨建伦, 叶凡, 徐荣昆, 胡青元, 甫跃成, 蒋树庆, 李林波, 陈进川, 徐泽平. Z箍缩等离子体电流分布实验研究. 物理学报, doi: 10.7498/aps.61.195207
    [9] 高启, 吴泽清, 张传飞, 李正宏, 徐荣昆, 祖小涛. Z箍缩Al等离子体发射谱的非局域平衡模拟. 物理学报, doi: 10.7498/aps.61.015201
    [10] 吴刚, 邱爱慈, 王亮平, 吕敏, 邱孟通, 丛培天. 双层喷气Z箍缩氖等离子体K层辐射研究. 物理学报, doi: 10.7498/aps.60.015203
    [11] 董克攻, 吴玉迟, 郑无敌, 朱斌, 曹磊峰, 何颖玲, 马占南, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 魏来, 臧华平, 余金清, 谷渝秋, 张保汉, 王晓方. 充气型放电毛细管的密度测量及磁流体模拟. 物理学报, doi: 10.7498/aps.60.095202
    [12] 黄俊, 孙顺凯, 肖德龙, 丁宁, 宁成, 张扬, 薛创. 丝阵Z箍缩早期消融等离子体动力学的二维数值模拟研究. 物理学报, doi: 10.7498/aps.59.6351
    [13] 叶 凡, 薛飞彪, 郭 存, 李正宏, 杨建伦, 徐荣昆, 章法强, 金永杰. 利用凸晶摄谱仪获取Z箍缩等离子体X辐射单色图像. 物理学报, doi: 10.7498/aps.57.1792
    [14] 张 扬, 丁 宁. 轴向流对Z箍缩等离子体稳定性的影响. 物理学报, doi: 10.7498/aps.55.2333
    [15] 邱爱慈, 蒯 斌, 曾正中, 王文生, 邱孟通, 王亮平, 丛培天, 吕 敏. “强光一号”钨丝阵Z箍缩等离子体辐射特性研究. 物理学报, doi: 10.7498/aps.55.5917
    [16] 邹晓兵, 王新新, 罗承沐, 韩 旻. 喷气式Z箍缩等离子体发射离子束能谱的研究. 物理学报, doi: 10.7498/aps.54.2133
    [17] 段耀勇, 郭永辉, 王文生, 邱爱慈. Z箍缩等离子体不稳定性的数值研究. 物理学报, doi: 10.7498/aps.53.3429
    [18] 段耀勇, 郭永辉, 王文生, 邱爱慈. 钨丝阵等离子体Z箍缩的数值模拟. 物理学报, doi: 10.7498/aps.53.2654
    [19] 李玉同, 张 杰, 陈黎明, 夏江帆, 腾 浩, 魏志义, 江文勉. 对飞秒激光等离子体相互作用中横向箍缩的观察. 物理学报, doi: 10.7498/aps.49.1400
    [20] 浓密等离子体焦点研究小组. 浓密等离子体焦点的研究. 物理学报, doi: 10.7498/aps.24.309
计量
  • 文章访问数:  87
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-14

/

返回文章
返回