搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双等离子体团相互作用的磁流体力学模拟

原晓霞 仲佳勇

引用本文:
Citation:

双等离子体团相互作用的磁流体力学模拟

原晓霞, 仲佳勇

Simulations for two colliding plasma bubbles embedded into an external magnetic field

Yuan Xiao-Xia, Zhong Jia-Yong
PDF
导出引用
  • 利用商用磁流体力学模拟程序USIM对双等离子体团相互作用过程进行了数值模拟,分别考察和比较了双对流等离子体团在外加磁场和无外加磁场情况下,相互作用的物理过程.发现在外加磁场情况下等离子体团相互作用会伴随着磁重联(反向磁场)、磁排斥(同向磁场)以及一些不稳定过程.针对激光产生等离子体团错位相互作用实验,进行了标度模拟,发现外加磁场起着重要作用,进一步表明激光等离子体的磁化特征.研究结果为下一步在神光Ⅱ激光装置进行强磁环境下等离子体实验提供理论指导.
    A commercial magnetohydrodynamic (MHD) simulation package USIM is used to simulate two colliding plasma bubbles, which are not moving in the same horizontal line along the X direction. One similar experiment is performed on Shenguang II laser facility, in which four laser beams each with a wavelength of 0.351 m, total energy of 1.0 kJ, pulse duration of 1ns, are irradiated on an Al target with a thickness of 50 m. Every two beams constitute one 150-m-diameter focal spot with an intensity of 1015 W/cm2. The X-ray radiation results show the asymmetric and peach-like plasma bubbles, which are different from the results obtained before. Here we report the possible reason for the asymmetric and peach-like structure in experiment. External magnetic field on the order of 1 T is chosen to perform the simulations, which could be a possible applied B field in future experiments performing on the Shenguang II laser facility. In the simulations, different cases, especially the effects of different directional external magnetic fields, are considered. When the reversal directional magnetic fields are embedded in the Y direction, the magnetic field lines are frozen in the plasma bubbles, moving and approaching to each other gradually with the magnetic field lines. The change of the direction of magnetic field lines in the interaction region indicates that the magnetic reconnection has been happened. The outflows between two plasma bubbles in the experimental result could be explained by magnetic reconnection, which can efficiently convert stored magnetic energy into kinetic energy and thermal energy by accelerating and heating plasma particles. The density jump at the position of the bow structure indicates the generation of shock waves, where the velocity of flow v is also larger than the sound speed vs. When the same directional attractive magnetic fields are embedded in the Y direction, magnetic field lines are piled up in the central part, where the magnetic field density is high, which indicates that the magnetic repulsion has been happened. Magnetic repulsion also delays the colliding between two plasma bubbles. The shock waves each with a width of 4 m are also found in this case. The X-ray images in experiment and the density images in simulations show the similar peach-like structures, where the density results could be used to explain the X-ray radiation result for, I(v,Te)(2)/(Te) e(-(hv)/(kTe), I is the radiation intense, v is the plasma velocity, Te is the electron temperature, is the plasma density.Magnetic reconnection is the possible reason for the asymmetrical and peach-like structure in the experiment by comparing all kinds of simulation cases. The present simulation results will be of benefit to the future designing of experimental setup on the Shenguang II laser facility, although a two-fluids model is needed to build a spontaneous magnetic field for the real plasma bubbles.
      通信作者: 仲佳勇, jyzhong@bnu.edu.cn
    • 基金项目: 北京科技新星(批准号:Z131109000413050)、国家自然科学基金(批准号:11622323)和中央高校基本科研业务费专项资金科学挑战专题(批准号:JCKY2016212A505)资助的课题.
      Corresponding author: Zhong Jia-Yong, jyzhong@bnu.edu.cn
    • Funds: Project supported by the Beijing Nova Program (Grant No. Z131109000413050), the National Natural Science Foundation of China (Grant No. 11622323), the Fundamental Research Funds for the Central Universities and Science Challenge Project, China (Grant No. JCKY2016212A505).
    [1]

    Schrafel P, Bell K, Greenly J, Seyler C, Kusse B 2015 Phys. Rev. E. 91 013110

    [2]

    Zhong J Y, Li Y T, Wang X G, Wang J Q, Dong Q L, Xiao C J, Wang S J, Liu X, Zhang L, An L, Wang F L, Zhu J Q, Gu Y, He X T, Zhao G, Zhang J 2010 Nature Phys. 6 984

    [3]

    Fiksel G, Fox W, Bhattacharjee A, Barnak D H, Chang P Y, Germaschewski K, Hu S X, Nilson P M 2014 Phys. Rev. Lett. 113 105003

    [4]

    Chittenden J P, Mitchell I H, Aliaga-Rossel R, Bayley J M, Beg F N, Lorenz A, Haines M G, Decker G 1997 Phys. Plasmas 4 2967

    [5]

    Kato T N, Takabe H 2008 Astrophys. J. 681 L93

    [6]

    Liu X, Li Y T, Zhang Y, Zhong J Y, Zheng W D, Dong Q L, Chen M, Zhao G, Sakawa Y, Morita T 2011 New J. Phys. 13 1433

    [7]

    Suzuki-Vidal F, Lebedev S V, Ciardi A, Pickworth L A, Rodriguez R, Gil J M, Espinosa G, Hartigan P, Swadling G F, Skidmore J, Hall G N, Bennett M, Bland S N, Burdiak G, de Grouchy P, Music J, Suttle L, Hansen E, Frank A 2015 Astrophys. J. 815 96

    [8]

    Morita T, Sakawa Y, Kuramitsu Y, Dono S, Aoki H, Tanji H, Kato T N, Li Y T, Zhang Y, Liu X, Zhong J Y, Takabe H, Zhang J 2010 Phys. Plasmas 17 122702

    [9]

    Zhang K, Zhong J Y, Wang J Q, Pei X X, Wei H G, Yuan D W, Yang Z W, Wang C, Li F, Han B, Yin C L, Liao G Q, Fang Y, Yang S, Yuan X H, Sakawa Y, Morita T, Cao Z R, Jiang S E, Ding Y K, Kuramitsu Y, Liang G Y, Wang F L, Li Y T, Zhu J Q, Zhang J, Zhao G 2015 High Energy Density Phys. 17 32

    [10]

    Malakit K, Shay M A, Cassak P, Ruffolo D J 2013 Phys. Rev. Lett. 111 135001

    [11]

    Rosenberg M J, Li C K, Fox W, Igumenshchev I, Sguin F H, Town R P J, Frenje J A, Stoeckl C, Glebov V, Petrasso R D 2015 Nat. Commun. 6 6190

    [12]

    Loverich J, Zhou S C D, Beckwith K, Kundrapu M, Loh M, Mahalingam S, Stoltz P, Hakim A 2013 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Grapevine, Texas, America, January 7-10, 2013 p1185

    [13]

    Loverich J, Hakim A 2010 J. Fusion Energ. 29 532

    [14]

    Pei X X, Zhong J Y, Zhang K, Zheng W D, Liang G Y, Wang F L, Li Y T, Zhao G 2014 Acta Phys. Sin. 63 145201 (in Chinese)[裴晓星, 仲佳勇, 张凯, 郑无敌, 梁贵云, 王菲鹿, 李玉同, 赵刚2014物理学报63 145201]

  • [1]

    Schrafel P, Bell K, Greenly J, Seyler C, Kusse B 2015 Phys. Rev. E. 91 013110

    [2]

    Zhong J Y, Li Y T, Wang X G, Wang J Q, Dong Q L, Xiao C J, Wang S J, Liu X, Zhang L, An L, Wang F L, Zhu J Q, Gu Y, He X T, Zhao G, Zhang J 2010 Nature Phys. 6 984

    [3]

    Fiksel G, Fox W, Bhattacharjee A, Barnak D H, Chang P Y, Germaschewski K, Hu S X, Nilson P M 2014 Phys. Rev. Lett. 113 105003

    [4]

    Chittenden J P, Mitchell I H, Aliaga-Rossel R, Bayley J M, Beg F N, Lorenz A, Haines M G, Decker G 1997 Phys. Plasmas 4 2967

    [5]

    Kato T N, Takabe H 2008 Astrophys. J. 681 L93

    [6]

    Liu X, Li Y T, Zhang Y, Zhong J Y, Zheng W D, Dong Q L, Chen M, Zhao G, Sakawa Y, Morita T 2011 New J. Phys. 13 1433

    [7]

    Suzuki-Vidal F, Lebedev S V, Ciardi A, Pickworth L A, Rodriguez R, Gil J M, Espinosa G, Hartigan P, Swadling G F, Skidmore J, Hall G N, Bennett M, Bland S N, Burdiak G, de Grouchy P, Music J, Suttle L, Hansen E, Frank A 2015 Astrophys. J. 815 96

    [8]

    Morita T, Sakawa Y, Kuramitsu Y, Dono S, Aoki H, Tanji H, Kato T N, Li Y T, Zhang Y, Liu X, Zhong J Y, Takabe H, Zhang J 2010 Phys. Plasmas 17 122702

    [9]

    Zhang K, Zhong J Y, Wang J Q, Pei X X, Wei H G, Yuan D W, Yang Z W, Wang C, Li F, Han B, Yin C L, Liao G Q, Fang Y, Yang S, Yuan X H, Sakawa Y, Morita T, Cao Z R, Jiang S E, Ding Y K, Kuramitsu Y, Liang G Y, Wang F L, Li Y T, Zhu J Q, Zhang J, Zhao G 2015 High Energy Density Phys. 17 32

    [10]

    Malakit K, Shay M A, Cassak P, Ruffolo D J 2013 Phys. Rev. Lett. 111 135001

    [11]

    Rosenberg M J, Li C K, Fox W, Igumenshchev I, Sguin F H, Town R P J, Frenje J A, Stoeckl C, Glebov V, Petrasso R D 2015 Nat. Commun. 6 6190

    [12]

    Loverich J, Zhou S C D, Beckwith K, Kundrapu M, Loh M, Mahalingam S, Stoltz P, Hakim A 2013 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Grapevine, Texas, America, January 7-10, 2013 p1185

    [13]

    Loverich J, Hakim A 2010 J. Fusion Energ. 29 532

    [14]

    Pei X X, Zhong J Y, Zhang K, Zheng W D, Liang G Y, Wang F L, Li Y T, Zhao G 2014 Acta Phys. Sin. 63 145201 (in Chinese)[裴晓星, 仲佳勇, 张凯, 郑无敌, 梁贵云, 王菲鹿, 李玉同, 赵刚2014物理学报63 145201]

  • [1] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展. 物理学报, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [2] 贾瑞煜, 方乒乒, 高超, 林机. 玻色-爱因斯坦凝聚体中的淬火孤子与冲击波. 物理学报, 2021, 70(18): 180303. doi: 10.7498/aps.70.20210564
    [3] 王小峰, 陶钢, 徐宁, 王鹏, 李召, 闻鹏. 冲击波诱导水中纳米气泡塌陷的分子动力学分析. 物理学报, 2021, 70(13): 134702. doi: 10.7498/aps.70.20210058
    [4] 于家成, 仲佳勇, 安维明, 平永利. 短脉冲强激光驱动磁重联过程的靶后电势分布特征. 物理学报, 2021, 70(6): 065201. doi: 10.7498/aps.70.20201339
    [5] 王琳, 魏来, 王正汹. 垂直磁重联平面的驱动流对磁岛链影响的模拟. 物理学报, 2020, 69(5): 059401. doi: 10.7498/aps.69.20191612
    [6] 辛建婷, 赵永强, 储根柏, 席涛, 税敏, 范伟, 何卫华, 谷渝秋. 强激光加载下锡材料微喷颗粒与气体混合回收实验研究及颗粒度分析. 物理学报, 2017, 66(18): 186201. doi: 10.7498/aps.66.186201
    [7] 李彦霏, 李玉同, 朱保君, 袁大伟, 李芳, 张喆, 仲佳勇, 魏会冈, 裴晓星, 刘畅, 原晓霞, 赵家瑞, 韩波, 廖国前, 鲁欣, 华能, 朱宝强, 朱健强, 方智恒, 安红海, 黄秀光, 赵刚, 张杰. 强激光产生的强磁场及其对弓激波的影响. 物理学报, 2017, 66(9): 095202. doi: 10.7498/aps.66.095202
    [8] 张凯, 仲佳勇, 裴晓星, 李玉同, 阪和洋一, 魏会冈, 袁大伟, 李芳, 韩波, 王琛, 贺昊, 尹传磊, 廖国前, 方远, 杨骕, 远晓辉, 梁贵云, 王菲鹿, 朱健强, 丁永坤, 张杰, 赵刚. 激光驱动磁重联过程中的喷流演化和电子能谱测量. 物理学报, 2015, 64(16): 165201. doi: 10.7498/aps.64.165201
    [9] 裴晓星, 仲佳勇, 张凯, 郑无敌, 梁贵云, 王菲鹿, 李玉同, 赵刚. 实验室天体物理的验证特例:W43A磁喷流. 物理学报, 2014, 63(14): 145201. doi: 10.7498/aps.63.145201
    [10] 王峰, 彭晓世, 梅鲁生, 刘慎业, 蒋小华, 丁永坤. 基于速度干涉仪的冲击波精密调速实验技术研究. 物理学报, 2012, 61(13): 135201. doi: 10.7498/aps.61.135201
    [11] 喻寅, 王文强, 杨佳, 张友君, 蒋冬冬, 贺红亮. 多孔脆性介质冲击波压缩破坏的细观机理和图像. 物理学报, 2012, 61(4): 048103. doi: 10.7498/aps.61.048103
    [12] 辛建婷, 谷渝秋, 李平, 罗炫, 蒋柏斌, 谭放, 韩丹, 巫殷忠, 赵宗清, 粟敬钦, 张保汉. 强激光加载下金属材料微喷回收诊断. 物理学报, 2012, 61(23): 236201. doi: 10.7498/aps.61.236201
    [13] 王峰, 彭晓世, 刘慎业, 蒋小华, 徐涛, 丁永坤, 张保汉. 三明治靶型在间接驱动冲击波实验中的应用. 物理学报, 2011, 60(11): 115203. doi: 10.7498/aps.60.115203
    [14] 何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰. 强激光与稠密等离子体作用引起的冲击波加速离子的研究. 物理学报, 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [15] 蒋冬冬, 杜金梅, 谷 岩, 冯玉军. 冲击波加载下PZT 95/5铁电陶瓷的电阻率研究. 物理学报, 2008, 57(1): 566-570. doi: 10.7498/aps.57.566
    [16] 俞宇颖, 谭 华, 胡建波, 戴诚达, 陈大年, 王焕然. 冲击波作用下铝的等效剪切模量. 物理学报, 2008, 57(4): 2352-2357. doi: 10.7498/aps.57.2352
    [17] 崔新林, 祝文军, 邓小良, 李英骏, 贺红亮. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究. 物理学报, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [18] 江少恩, 李文洪, 孙可煦, 蒋小华, 刘永刚, 崔延莉, 陈久森, 丁永坤, 郑志坚. 神光Ⅱ上柱形黑腔辐射驱动冲击波. 物理学报, 2004, 53(10): 3424-3428. doi: 10.7498/aps.53.3424
    [19] 傅思祖, 黄秀光, 吴 江, 王瑞荣, 马民勋, 何钜华, 叶君健, 顾 援. 斜入射激光驱动的冲击波在样品中传播特性的实验研究. 物理学报, 2003, 52(8): 1877-1881. doi: 10.7498/aps.52.1877
    [20] 张杰, 王薇. 冲击波在铝靶中传播的数值模拟研究. 物理学报, 2001, 50(4): 741-747. doi: 10.7498/aps.50.741
计量
  • 文章访问数:  3208
  • PDF下载量:  243
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-24
  • 修回日期:  2017-01-06
  • 刊出日期:  2017-04-05

双等离子体团相互作用的磁流体力学模拟

  • 1. 北京师范大学天文系, 北京 100875;
  • 2. IFSA协同创新中心, 上海交通大学, 上海 200240
  • 通信作者: 仲佳勇, jyzhong@bnu.edu.cn
    基金项目: 北京科技新星(批准号:Z131109000413050)、国家自然科学基金(批准号:11622323)和中央高校基本科研业务费专项资金科学挑战专题(批准号:JCKY2016212A505)资助的课题.

摘要: 利用商用磁流体力学模拟程序USIM对双等离子体团相互作用过程进行了数值模拟,分别考察和比较了双对流等离子体团在外加磁场和无外加磁场情况下,相互作用的物理过程.发现在外加磁场情况下等离子体团相互作用会伴随着磁重联(反向磁场)、磁排斥(同向磁场)以及一些不稳定过程.针对激光产生等离子体团错位相互作用实验,进行了标度模拟,发现外加磁场起着重要作用,进一步表明激光等离子体的磁化特征.研究结果为下一步在神光Ⅱ激光装置进行强磁环境下等离子体实验提供理论指导.

English Abstract

参考文献 (14)

目录

    /

    返回文章
    返回