搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

凹凸梁型低频指向性弯张换能器

张秀侦 莫喜平 柴勇 潘瑞 田芝凤

引用本文:
Citation:

凹凸梁型低频指向性弯张换能器

张秀侦, 莫喜平, 柴勇, 潘瑞, 田芝凤

Low-frequency directional flextensional transducer with concave-convex beam

ZHANG Xiuzhen, MO Xiping, CHAI Yong, PAN Rui, TIAN Zhifeng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 弯张换能器的尺寸远小于波长, 从而阻碍了紧凑型水声换能器产生定向波束. 针对传统的指向性弯张换能器电路驱动的幅度相位调控的复杂性问题, 本文提出一种指向性弯张换能器结构, 采用外凸型弯曲梁与内凹型弯曲梁复合而成的非对称壳体结构实现低频指向性发射, 可简化换能器的配套电路系统, 便于应用且成本更低. 本文从换能器的振动和辐射特性分析入手, 揭示了指向性形成机理并建立了等效双球源模型. 采用数值模拟的方法分析了主要结构参数对换能器谐振频率、发送电压响应、前后声压比及指向性的影响. 通过优化设计, 换能器在1240—1660 Hz的工作频段内最大发送电压响应为145.9 dB, 可在单电路驱动下产生前后声压比最大27 dB的心型指向性波束, 并且大大降低了有源材料的剪切应力, 可有效避免大功率发射时有源材料的疲劳失效, 为低频水声定向发射提供了一种更便捷的方法.
    The dimensions of flextensional transducers are much smaller than the wavelength, thereby hindering the generation of directional beams by compact underwater acoustic transducers. To address the complexities of amplitude and phase modulation in circuit-driven traditional directional flextensional transducers, a directional flextensional transducer structure is proposed in this work. By implementing an asymmetric composite shell configuration combining concave and convex curved beams, the low-frequency directional radiation is achieved while simplifying peripheral driving circuits, thereby improving the operational convenience and cost-effectiveness. Through an analysis of the vibration characteristics and radiation mechanisms, this study elucidates the principle of directional generation. The concave and convex beams of the flextensional transducer exhibit an intrinsic operational characteristic of opposite-phase normal displacement in their vibration modes. By adjusting structural parameters, the amplitude output from the two beams under a single actuator drive can satisfy a specific differential relationship, effectively resulting in the modal superposition of a monopole and a dipole, thereby achieving directional radiation. By using a Lorentzian resonance fitting function and a linear fitting function, the relationship between the frequency-dependent amplitude ratio and phase difference of sound pressure for the concave and convex beams is established, forming an unequal amplitude, unequal phase dual-spherical source radiation model for the transducer, thereby providing a theoretical framework for controlling the directivity of the transducer. Through numerical simulations, the effects of the transducer sidewall parameters, as well as the thicknesses and curvature radii of the concave and convex beams, on the transducer’s resonance frequency, transmitting voltage response, front-to-back sound pressure ratio, and directivity are analyzed. Sensitivity ranking of the structural parameters is also presented. Finally, the optimization of transducer’s performance is discussed and compared with that in other existing research, showing the advantages of this design. Specifically, the transducer achieves a maximum transmitting voltage response of 145.9 dB within the operating frequency band from 1240 Hz to 1660 Hz. Under single-circuit drive, a cardioid-shaped directional beam with a maximum front-to-back sound pressure ratio of 27 dB is produced. Furthermore, the shear stress on the active material is significantly reduced, effectively preventing fatigue failure of the active material during high-power emission. This provides a more convenient method for achieving low-frequency underwater acoustic directional emission.
  • 图 1  换能器结构与主要尺寸参数

    Fig. 1.  Transducer Structure and main dimensional parameters.

    图 2  前二阶模态位移矢量图

    Fig. 2.  Displacement vectors of the first two-order modes.

    图 3  换能器在(a)空气中和(b)水中的凹凸梁辐射面中心点法向位移

    Fig. 3.  Normal displacement at the center of the radiating surface of the arched beam for the transducer in (a) air and (b) water.

    图 4  换能器水中凹侧和凸侧距离声中心10 m处的(a)声压及(b)相位频响曲线

    Fig. 4.  (a) Sound pressure and (b) phase frequency response curves at 10 m from the acoustic center for the concave and convex sides of the transducer in water.

    图 5  凹凸梁型低频指向性弯张换能器等效双球源模型

    Fig. 5.  Equivalent dual-spherical source model of the concave-convex beam low-frequency directional flextensional transducer.

    图 6  侧壁长度$ l $ 对换能器的影响 (a) TVR; (b) FBR; (c) 最大指向性

    Fig. 6.  Effect of sidewall length $ l $ on the transducer: (a) TVR; (b) FBR; (c) maximum directivity.

    图 7  侧壁宽度$ w $对换能器的影响 (a) TVR; (b) FBR; (c) 最大指向性

    Fig. 7.  Effect of sidewall width $ w $ on the transducer: (a) TVR; (b) FBR; (c) maximum directivity.

    图 8  侧壁高度 $ h $对换能器的影响 (a) TVR, (b) FBR; (c) 最大指向性

    Fig. 8.  Effect of sidewall height $ h $ on the transducer: (a) TVR; (b) FBR; (c) maximum directivity.

    图 9  凸梁曲率半径$ {r}_{1} $对换能器的影响 (a) TVR; (b) FBR; (c) 最大指向性

    Fig. 9.  Effect of convex beam curvature radius $ {r}_{1} $on the transducer: (a) TVR; (b) FBR; (c) maximum directivity.

    图 10  凸梁厚度 $ {t}_{1} $对换能器的影响 (a) TVR; (b) FBR; (c) 最大指向性

    Fig. 10.  Effect of convex beam thickness $ {t}_{1} $on the transducer: (a) TVR; (b) FBR; (c) maximum directivity.

    图 11  凹梁曲率半径$ {r}_{2} $ 对换能器的影响 (a) TVR; (b) FBR; (c) 最大指向性

    Fig. 11.  Effect of concave beam curvature radius $ {r}_{2} $on the transducer: (a) TVR; (b) FBR; (c) maximum directivity.

    图 12  凹梁厚度 $ {t}_{2} $对换能器的影响 (a) TVR; (b) FBR; (c) 最大指向性

    Fig. 12.  Effect of concave beam thickness $ {t}_{2} $on the transducer: (a) TVR; (b) FBR; (c) maximum directivity.

    图 13  (a) 换能器z方向和y方向的TVR曲线对比; (b) 换能器在1480 Hz处的xy平面和xz平面指向性图; (c) 换能器xy平面示意图; (d) 换能器xz平面示意图

    Fig. 13.  (a) Comparison of TVR curves in the z-direction and y-direction of the transducer; (b) directivity patterns in the xy-plane and xz-plane at 1480 Hz; (c) schematic diagram of the xy-plane of the transducer; (d) schematic diagram of the xz-plane of the transducer.

    图 14  (a) 优化后的换能器凹侧、凸侧、z方向、y方向的TVR曲线; (b) 1480 Hz处的指向性图

    Fig. 14.  (a) TVR curves of the concave side, convex side, z-, and y-directions of the optimized transducer; (b) directivity pattern at 1480 Hz.

    图 15  (a) 优化后的换能器空气中导纳曲线; (b) 优化后的换能器水中导纳曲线

    Fig. 15.  (a) Admittance curve of the optimized transducer in air; (b) admittance curve of the optimized transducer in water.

    图 16  (a) 优化后的换能器和传统Ⅳ型、Ⅶ型弯张换能器的TVR对比; (b)优化后的换能器和传统采用双激励法实现低频指向性的Ⅳ型弯张换能器的压电振子径向位移对比

    Fig. 16.  (a) Comparison of TVR between the optimized transducer and traditional Class IV and Class VII flextensional transducers; (b) comparison of radial displacement of piezoelectric vibrators between the optimized transducer and the traditional Class IV flextensional transducer achieving low-frequency directivity using dual-drive excitation.

    表 1  换能器结构参数优化范围

    Table 1.  Optimization range of the transducer structure parameters.

    参数取值范围/mm步长/mm
    $ l $155—1705
    $ w $130—16010
    $ h $35—505
    $ {r}_{1} $150—30050
    $ {t}_{1} $6—122
    $ {r}_{2} $150—30050
    $ {t}_{2} $6—122
    下载: 导出CSV

    表 2  换能器优化后的结构参数

    Table 2.  Structural parameters of the transducer after optimization.

    参数值/mm参数值/mm
    $ l $160$ {t}_{1} $7
    $ w $160$ {r}_{2} $300
    $ h $40$ {t}_{2} $13
    $ {r}_{1} $200换能器总高度236
    下载: 导出CSV
  • [1]

    Fan X D, Zhu Y F, Liang B, Cheng J C, Zhang L K 2018 Phys. Rev. Appl. 9 034035Google Scholar

    [2]

    刘永平, 莫喜平, 柴勇, 张运强, 崔斌 2019 声学学报 6 1060

    Liu Y P, Mo X P, Chai Y, Zhang Y Q, Cui B 2019 Acta Acust. 6 1060

    [3]

    Moosad K P B, Chandrashekar G, Joseph M J, Sharma D, Kumar N 2011 Appl. Acoust. 72 127Google Scholar

    [4]

    Butler S C 2010 160th Meeting Acoustical Society of America Cancun, Mexico, November 15–19, 2010 p030001

    [5]

    Zhang J, Hladky-Hennion A C, Hughes W J, Newnham R E 2001 Ultrasonics 39 91Google Scholar

    [6]

    Zhang J, Newnham R E 2003 US Patent 6 614 143

    [7]

    Wang Q M, Fan J, Lan Y, Zhou T F 2022 J. Acoust. Soc. Am. 151 2223Google Scholar

    [8]

    蓝宇, 王秋木, 李宽 2017 中国专利 107452365A

    Lan Y, Wang Q M, Li K 2017 CN Patent 107452365A

    [9]

    李宽 2015 硕士学位论文 (哈尔滨: 哈尔滨工程大学)

    Li K 2015 M. S. Thesis (Harbin: Harbin Engineering University

    [10]

    莫喜平 2020 哈尔滨工程大学学报 41 1500Google Scholar

    Mo X P 2020 J. Harbin Eng. Univ. 41 1500Google Scholar

    [11]

    夏铁坚, 范进良, 刘强, 周利生, 王照霞 2005 中国声学学会2005年青年学术会议论文集 中国杭州, 2005 第588页

    Xia T J, Fan J L, Liu Q, Zhou L S, Wang Z X 2005 Proceedings of the CYCA'05 Hangzhou, China, 2005 p588

    [12]

    Zhang X Z, Wu C F, Gong W, Wang K, Mo X P, Chai Y 2024 Appl. Phys. Lett. 124 022901Google Scholar

    [13]

    滕舵 2016 水声换能器基础 第113页

    Teng D 2016 Fundamentals of Hydroacoustic Transducers (Northwestern Polytechnical University Press) p113

    [14]

    Butler S C, Butler A L, Butler J L, Cavanagh G H 1997 J. Acoust. Soc. Am. 102 308Google Scholar

    [15]

    Butler S C, Butler A L 1992 J. Acoust. Soc. Am. 92 2977Google Scholar

    [16]

    Butler J L, Butler A L 2003 J. Acoust. Soc. Am. 115 658

    [17]

    李杰, 顾磊, 吉辰 2024 舰船电子工程 44 214Google Scholar

    Li J, Gu L, Ji C 2024 Ship Electron. Eng. 44 214Google Scholar

    [18]

    赵智勇, 王祖杰 2009 水雷与战舰防护 17 15

    Zhao Z Y, Wang Z J 2009 J. Underwater Acoust. 17 15

    [19]

    Zhang X Z, Chai Y, Mo X P 2022 16th Symposium on Piezoelectricity, Acoustic Waves, and Device Applications Nanjing, China, October 11-14, 2022 p691

    [20]

    张海澜 2012 理论声学(北京: 高等教育出版社) 第410页

    Zhang H L 2012 Theoretical Acoustics (Beijing: Higher Education Press) p410

    [21]

    胡久龄 2009 硕士学位论文 (哈尔滨: 哈尔滨工程大学)

    Hu J L 2009 M. S. Thesis (Harbin: Harbin Engineering University

    [22]

    Moosad K P B, Krishnakumar P, Chandrashekar G, Vishnubhatla R M R 2006 Appl. Acoust. 10 1280

    [23]

    刘慧生, 张运强, 崔斌 2017 声学与电子工程 1 33Google Scholar

    Liu H S, Zhang Y Q, Cui B 2017 Acoust. Electron. Eng. 1 33Google Scholar

    [24]

    李志强, 莫喜平, 张运强, 崔斌, 潘耀宗, 李鹏 2015 声学技术 6 566

    Li Z Q, Mo X P, Zhang Y Q, Cui B, Pan Y Z, Li P 2015 Acoustical Technology 6 566

    [25]

    卢苇, 叶皓棠 2025 声学学报 50 149Google Scholar

    Lu W, Ye H T 2025 Acta Acust. 50 149Google Scholar

  • [1] 刘洋, 陈诚, 林书玉. 基于声黑洞设计理论的径向夹心式径-弯复合换能器. 物理学报, doi: 10.7498/aps.73.20231983
    [2] 张羿双, 桑永杰, 陈永耀, 吴帅. Janus-Helmholtz换能器的振动模态谐振频率理论分析研究. 物理学报, doi: 10.7498/aps.73.20231251
    [3] 段韵达, 胡恒山. 轴对称指向性球面波的界面反射波. 物理学报, doi: 10.7498/aps.71.20211718
    [4] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律. 物理学报, doi: 10.7498/aps.71.20211132
    [5] 高飞, 徐芳华, 李整林, 秦继兴. 大陆坡内波环境中声传播模态耦合及强度起伏特征. 物理学报, doi: 10.7498/aps.71.20220634
    [6] 李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓. 基于超表面的多波束多模态太赫兹涡旋波产生. 物理学报, doi: 10.7498/aps.70.20210897
    [7] 周彦玲, 范军, 王斌, 李兵. 水下环形凹槽圆柱体散射声场空间指向性调控. 物理学报, doi: 10.7498/aps.70.20210111
    [8] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律研究. 物理学报, doi: 10.7498/aps.70.20211132
    [9] 孟瑞洁, 周士弘, 李风华, 戚聿波. 浅海波导中低频声场干涉简正模态的判别. 物理学报, doi: 10.7498/aps.68.20190221
    [10] 杨巨涛, 李清亮, 王建国, 郝书吉, 潘威炎. 双频双波束加热电离层激发甚低频/极低频辐射理论分析. 物理学报, doi: 10.7498/aps.66.019401
    [11] 李鹏, 章新华, 付留芳, 曾祥旭. 一种基于模态域波束形成的水平阵被动目标深度估计. 物理学报, doi: 10.7498/aps.66.084301
    [12] 谢平, 杨芳梅, 李欣欣, 杨勇, 陈晓玲, 张利泰. 基于变分模态分解-传递熵的脑肌电信号耦合分析. 物理学报, doi: 10.7498/aps.65.118701
    [13] 郭俊媛, 杨士莪, 朴胜春, 莫亚枭. 基于超指向性多极子矢量阵的水下低频声源方位估计方法研究. 物理学报, doi: 10.7498/aps.65.134303
    [14] 郭蓉, 曹祥玉, 袁子东, 徐雪飞. 一种新型宽带定向性贴片天线设计. 物理学报, doi: 10.7498/aps.63.244102
    [15] 吕君, 赵正予, 周晨, 张援农. 有限振幅声波间的非线性相互作用对声源远场指向性的影响. 物理学报, doi: 10.7498/aps.60.084301
    [16] 裴利军, 邱本花. 模态分解法在非恒同耦合系统同步研究中的推广. 物理学报, doi: 10.7498/aps.59.164
    [17] 侯王宾, 刘天琪, 李兴源. 基于经验模态分解滤波的低频振荡Prony分析. 物理学报, doi: 10.7498/aps.59.3531
    [18] 贺西平, 李 斌. 弯张换能器装配预应力及入水后的变化. 物理学报, doi: 10.7498/aps.53.498
    [19] 张仁和, 朱柏贤. 指向性辐射器的简正波声场. 物理学报, doi: 10.7498/aps.32.490
    [20] 严仁博. 超声楔形换能器的体波和瑞利表面波指向性图案. 物理学报, doi: 10.7498/aps.23.41
计量
  • 文章访问数:  260
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-09
  • 修回日期:  2025-04-09
  • 上网日期:  2025-04-17

/

返回文章
返回