搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超指向性多极子矢量阵的水下低频声源方位估计方法研究

郭俊媛 杨士莪 朴胜春 莫亚枭

引用本文:
Citation:

基于超指向性多极子矢量阵的水下低频声源方位估计方法研究

郭俊媛, 杨士莪, 朴胜春, 莫亚枭

Direction-of-arrival estimation based on superdirective multi-pole vector sensor array for low-frequency underwater sound sources

Guo Jun-Yuan, Yang Shi-E, Piao Sheng-Chun, Mo Ya-Xiao
PDF
导出引用
  • 针对水下低频声源的方位估计问题, 基于基元紧密排列的二维矢量阵, 建立了一种超指向性波束形成方法. 根据矢量基元差分运算构建各阶多极子模型, 获得了几乎与频率无关的模态函数, 并经加权计算可在低频条件下实现超指向性波束, 以解决阵列孔径对波束性能的限制. 同时, 结合输出信噪比最大准则所得波束, 分析了超指向性波束形成算法的稳定性与波导的影响程度, 探索模态阶数与阵列参数的选取原则. 通过阵列性能的仿真计算与实际阵列的测量数据表明, 该算法可在小尺寸阵列孔径下获得良好的阵列波束, 兼具了水下线型超指向性阵和环形超指向性阵的优点, 可有效实现水下低频声源的水平方位估计; 且波束性能可通过调节模态阶数与基元间距以达到最佳, 并受水下声波导多途与频散效应影响有限.
    With the advances of ship noise reduction technology, the working frequency of the passive sonar must be reduced in order to detect a target. For the conventional array, it requires a large array aperture, comparable to the wavelength, in order to achieve an acceptable angular resolution. Arrays of small physical size with high angular resolution are thus attractive for low-frequency direction-of-arrival estimation of underwater sound source. In this paper, we consider a 33 uniform rectangular array which consists of vector sensors with inter-sensor spacing much smaller than the wavelength. A broadband super-directive beamforming method is proposed for this vector sensor array, which extracts multi-pole modes of different orders from the spatial differentials of the sound field. By normalizing the amplitudes of the multi-pole modes, frequency invariant mode functions can be obtained, which are used to build the desired beam pattern, despite the Rayleigh limit on the achievable angular resolution. Vector sensors are used to replace the pressure difference operation, thus to achieve a desirable beam pattern, the order of spatial differential will be reduced. In other words, for the same array configuration, using the vector sensors provides higher directivity than using the pressure sensor. To concentrate on the sources, and to minimize all hindrances from around circumference, a suitable beam pattern is constructed as an example to analysis. To verify the algorithm, a prototype is built and tested in a water tank. Comparisons are carried out between the actually synthesized beam patterns and the theoretical ones. The experimental results show good agreement with the theoretical results, and that the directivity increases with the multi-pole mode order increasing, at the expense of lower robustness. The performances for different values of ka are also investigated, where k is the wave number and a denotes the inter-sensor spacing. Simulation results show that when the inter-sensor spacing is no more than one-sixth of the incident wave length, the error introduced by the approximations for muti-pole mode extraction can be neglected. It should be noted that this result of the inter-sensor spacing still applicable when considering array gain, showing that the array is insensitive to uncorrelated noise while preserving a relatively high array gain. Finally, the influence of the underwater acoustic waveguide on the array performance is analyzed. Simulations and experimental tests show that due to the small array aperture, the waveguide effects on the array performance are limited.
      通信作者: 朴胜春, piaoshengchun@hrbeu.edu.cn
    • 基金项目: 国防科技重点实验室基金(批准号: 9140C200103120C2001)和国家自然科学基金重点项目(批准号: 11234002)资助的课题.
      Corresponding author: Piao Sheng-Chun, piaoshengchun@hrbeu.edu.cn
    • Funds: Project supported by the Science and Technology Foundation of State Key Laboratory, China (Grant No. 9140C200103120C2001) and the National Natural Science Foundation of China (Grant No. 11234002).
    [1]

    Yang S E 2012 Acoustics 2012 Hong Kong Conference and Exhibition Hong Kong SAR, China, May 13-18, 2012 p336

    [2]

    Wang D Z, Shang E C 2013 Underwater Acoustics (Beijing: Science Press) pp545-549 (in Chinese) [汪徳昭, 尚尔昌 2013 水声学 (北京:科学出版社) 第 545-549 页]

    [3]

    Wang Y, Yang Y X, Ma Y L, He Z Y 2014 J. Acoust. Soc. Am. 136 1712

    [4]

    Parsons A T 1987 J. Acoust. Soc. Am. 82 179

    [5]

    Olson H F 1946 J. Acoust. Soc. Am. 17 192

    [6]

    Uzsoky M, Solymar L 1956 Acta Phys. 6 185

    [7]

    Morris M L, Jensen M A, Wallance J W 2005 IEEE Trans. Antennas Propag. 53 2850

    [8]

    Teutsch H, Kellermann W 2006 J. Acoust. Soc. Am. 120 2724

    [9]

    Teutsch H 2007 Modal Array Signal Processing: Principles and Applications of Acoustic Wavefield Decomposition (Berlin: Springer-Verlag) pp33-113

    [10]

    Elko G W 2004 Differential Microphone Arrays (Berlin: Springer-Verlag) pp33-94

    [11]

    Thompson S C 2003 Hearing J. 56 14

    [12]

    Chung K, Zeng F G, Acker K N 2006 J. Acoust. Soc. Am. 120 2216

    [13]

    Benesty J, Souden M, Huang Yiteng 2012 IEEE Trans. Audio Speech Lang. Process. 20 699

    [14]

    Benesty J, Chen J 2012 Study and Design of Differential Microphone Arrays (Berlin: Springer-Verlag) pp41-94

    [15]

    Griffiths J W R, Griffiths H D, Cowan C F N, Eiges R, Rafik T 1994 Oceans 94/OSATES Conference on Oceans Engineering for Todays Technology and Tomorrows Preservation Brest, France, Sep. 13-16, 1994 p223

    [16]

    Meyer J 2001 J. Acoust. Soc. Am. 109 185

    [17]

    Ma Y L, Yang Y X, He Z Y, Yang K D, Sun C, Wang Y M 2013 IEEE Trans. Ind. Electron. 60 203

    [18]

    Elko G W 1999 J. Acoust. Soc. Am. 105 1098

    [19]

    Buck M 2002 Eur. T. Telecommun. 13 115

    [20]

    Abhayapala T D, Gupta A 2010 J. Acoust. Soc. Am. 127 EL227

    [21]

    Sena E D, Hacihabiboglu H, Cvetkovic Z 2012 IEEE Trans. Audio Speech Lang. Process. 20 162

    [22]

    Zhang T W, Yang K D, Ma Y L 2010 Chin. Phys. B 19 124301

    [23]

    Shi J, Yang D S, Shi S G 2012 Acta Phys. Sin. 61 124302 (in Chinese) [时洁, 杨德森, 时胜国 2012 物理学报 61 124302]

    [24]

    Shi J, Yang D S, Shi S G, Zhu Z R 2016 Acta Phys. Sin. 65 124302 (in Chinese) [时洁, 杨德森, 时胜国, 朱中锐 2016 物理学报 65 024302]

    [25]

    Sun G Q, Li Q H 2004 Acta Acust. 29 491 (in Chinese) [孙贵青, 李启虎 2004 声学学报 29 491]

    [26]

    Guo J Y, Yang S E, Piao S C 2015 170th Metting Acoustical Society of America Jacksonville, Florida, United States, Nov. 2-6, 2015 p1737

    [27]

    Zou N, Nehorai A 2009 IEEE Trans. Signal Process. 57 3041

    [28]

    Gur B 2014 J. Acoust. Soc. Am. 135 3463

    [29]

    Nehorai A, Paldi E 1994 IEEE Trans. Signal Process. 42 2481

    [30]

    Smith K B, Vincent A, Leijen V 2007 J. Acoust. Soc. Am. 122 370

  • [1]

    Yang S E 2012 Acoustics 2012 Hong Kong Conference and Exhibition Hong Kong SAR, China, May 13-18, 2012 p336

    [2]

    Wang D Z, Shang E C 2013 Underwater Acoustics (Beijing: Science Press) pp545-549 (in Chinese) [汪徳昭, 尚尔昌 2013 水声学 (北京:科学出版社) 第 545-549 页]

    [3]

    Wang Y, Yang Y X, Ma Y L, He Z Y 2014 J. Acoust. Soc. Am. 136 1712

    [4]

    Parsons A T 1987 J. Acoust. Soc. Am. 82 179

    [5]

    Olson H F 1946 J. Acoust. Soc. Am. 17 192

    [6]

    Uzsoky M, Solymar L 1956 Acta Phys. 6 185

    [7]

    Morris M L, Jensen M A, Wallance J W 2005 IEEE Trans. Antennas Propag. 53 2850

    [8]

    Teutsch H, Kellermann W 2006 J. Acoust. Soc. Am. 120 2724

    [9]

    Teutsch H 2007 Modal Array Signal Processing: Principles and Applications of Acoustic Wavefield Decomposition (Berlin: Springer-Verlag) pp33-113

    [10]

    Elko G W 2004 Differential Microphone Arrays (Berlin: Springer-Verlag) pp33-94

    [11]

    Thompson S C 2003 Hearing J. 56 14

    [12]

    Chung K, Zeng F G, Acker K N 2006 J. Acoust. Soc. Am. 120 2216

    [13]

    Benesty J, Souden M, Huang Yiteng 2012 IEEE Trans. Audio Speech Lang. Process. 20 699

    [14]

    Benesty J, Chen J 2012 Study and Design of Differential Microphone Arrays (Berlin: Springer-Verlag) pp41-94

    [15]

    Griffiths J W R, Griffiths H D, Cowan C F N, Eiges R, Rafik T 1994 Oceans 94/OSATES Conference on Oceans Engineering for Todays Technology and Tomorrows Preservation Brest, France, Sep. 13-16, 1994 p223

    [16]

    Meyer J 2001 J. Acoust. Soc. Am. 109 185

    [17]

    Ma Y L, Yang Y X, He Z Y, Yang K D, Sun C, Wang Y M 2013 IEEE Trans. Ind. Electron. 60 203

    [18]

    Elko G W 1999 J. Acoust. Soc. Am. 105 1098

    [19]

    Buck M 2002 Eur. T. Telecommun. 13 115

    [20]

    Abhayapala T D, Gupta A 2010 J. Acoust. Soc. Am. 127 EL227

    [21]

    Sena E D, Hacihabiboglu H, Cvetkovic Z 2012 IEEE Trans. Audio Speech Lang. Process. 20 162

    [22]

    Zhang T W, Yang K D, Ma Y L 2010 Chin. Phys. B 19 124301

    [23]

    Shi J, Yang D S, Shi S G 2012 Acta Phys. Sin. 61 124302 (in Chinese) [时洁, 杨德森, 时胜国 2012 物理学报 61 124302]

    [24]

    Shi J, Yang D S, Shi S G, Zhu Z R 2016 Acta Phys. Sin. 65 124302 (in Chinese) [时洁, 杨德森, 时胜国, 朱中锐 2016 物理学报 65 024302]

    [25]

    Sun G Q, Li Q H 2004 Acta Acust. 29 491 (in Chinese) [孙贵青, 李启虎 2004 声学学报 29 491]

    [26]

    Guo J Y, Yang S E, Piao S C 2015 170th Metting Acoustical Society of America Jacksonville, Florida, United States, Nov. 2-6, 2015 p1737

    [27]

    Zou N, Nehorai A 2009 IEEE Trans. Signal Process. 57 3041

    [28]

    Gur B 2014 J. Acoust. Soc. Am. 135 3463

    [29]

    Nehorai A, Paldi E 1994 IEEE Trans. Signal Process. 42 2481

    [30]

    Smith K B, Vincent A, Leijen V 2007 J. Acoust. Soc. Am. 122 370

  • [1] 朱启轩, 孙超, 刘雄厚. 利用海底弹射区角度-距离干涉结构特征实现声源深度估计. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220746
    [2] 段韵达, 胡恒山. 轴对称指向性球面波的界面反射波. 物理学报, 2022, 71(7): 074301. doi: 10.7498/aps.71.20211718
    [3] 程巍, 滕鹏晓, 吕君, 姬培锋, 戴翊靖. 基于大气声传播理论的爆炸声源能量估计. 物理学报, 2021, 70(24): 244203. doi: 10.7498/aps.70.20210562
    [4] 周彦玲, 范军, 王斌, 李兵. 水下环形凹槽圆柱体散射声场空间指向性调控. 物理学报, 2021, 70(17): 174301. doi: 10.7498/aps.70.20210111
    [5] 葛一凡, 吴毅萍, 臧小飞, 袁英豪, 陈麟. 暗态多极赝局域等离子模式的太赫兹涡旋光激发. 物理学报, 2020, 69(18): 184203. doi: 10.7498/aps.69.20200695
    [6] 孟瑞洁, 周士弘, 李风华, 戚聿波. 浅海波导中低频声场干涉简正模态的判别. 物理学报, 2019, 68(13): 134304. doi: 10.7498/aps.68.20190221
    [7] 李晓曼, 张明辉, 张海刚, 朴胜春, 刘亚琴, 周建波. 一种基于模态匹配的浅海波导中宽带脉冲声源的被动测距方法. 物理学报, 2017, 66(9): 094302. doi: 10.7498/aps.66.094302
    [8] 李鹏, 章新华, 付留芳, 曾祥旭. 一种基于模态域波束形成的水平阵被动目标深度估计. 物理学报, 2017, 66(8): 084301. doi: 10.7498/aps.66.084301
    [9] 郭晓乐, 杨坤德, 马远良, 杨秋龙. 一种基于简正波模态消频散变换的声源距离深度估计方法. 物理学报, 2016, 65(21): 214302. doi: 10.7498/aps.65.214302
    [10] 戚聿波, 周士弘, 张仁和, 任云. 一种基于β-warping变换算子的被动声源距离估计方法. 物理学报, 2015, 64(7): 074301. doi: 10.7498/aps.64.074301
    [11] 李明杨, 孙超, 邵炫. 模态信息非完备采样对水下声源检测的影响及改进方法. 物理学报, 2014, 63(20): 204302. doi: 10.7498/aps.63.204302
    [12] 戚聿波, 周士弘, 张仁和, 张波, 任云. 水平变化浅海声波导中模态特征频率与声源距离被动估计. 物理学报, 2014, 63(4): 044303. doi: 10.7498/aps.63.044303
    [13] 梁国龙, 马巍, 范展, 王逸林. 矢量声纳高速运动目标稳健高分辨方位估计 . 物理学报, 2013, 62(14): 144302. doi: 10.7498/aps.62.144302
    [14] 时洁, 杨德森, 时胜国. 基于矢量阵的运动声源柱面聚焦定位方法试验研究. 物理学报, 2012, 61(12): 124302. doi: 10.7498/aps.61.124302
    [15] 吕君, 赵正予, 周晨, 张援农. 有限振幅声波间的非线性相互作用对声源远场指向性的影响. 物理学报, 2011, 60(8): 084301. doi: 10.7498/aps.60.084301
    [16] 侯王宾, 刘天琪, 李兴源. 基于经验模态分解滤波的低频振荡Prony分析. 物理学报, 2010, 59(5): 3531-3537. doi: 10.7498/aps.59.3531
    [17] 关 威, 胡恒山, 储昭坦. 声诱导电磁场的赫兹矢量表示与多极声电测井模拟. 物理学报, 2006, 55(1): 267-274. doi: 10.7498/aps.55.267
    [18] 邢定钰, 袁俭. 半无限超晶格的原子均方位移. 物理学报, 1986, 35(6): 812-818. doi: 10.7498/aps.35.812
    [19] 张仁和, 朱柏贤. 指向性辐射器的简正波声场. 物理学报, 1983, 32(4): 490-496. doi: 10.7498/aps.32.490
    [20] 严仁博. 超声楔形换能器的体波和瑞利表面波指向性图案. 物理学报, 1974, 23(6): 41-50. doi: 10.7498/aps.23.41
计量
  • 文章访问数:  2959
  • PDF下载量:  310
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-12
  • 修回日期:  2016-04-22
  • 刊出日期:  2016-07-05

基于超指向性多极子矢量阵的水下低频声源方位估计方法研究

  • 1. 哈尔滨工程大学水声工程学院, 哈尔滨 150001;
  • 2. 哈尔滨工程大学, 水声技术重点实验室, 哈尔滨 150001;
  • 3. 中国科学院声学研究所, 北京 100190;
  • 4. 中国科学院水声环境特性重点实验室, 北京 100190
  • 通信作者: 朴胜春, piaoshengchun@hrbeu.edu.cn
    基金项目: 国防科技重点实验室基金(批准号: 9140C200103120C2001)和国家自然科学基金重点项目(批准号: 11234002)资助的课题.

摘要: 针对水下低频声源的方位估计问题, 基于基元紧密排列的二维矢量阵, 建立了一种超指向性波束形成方法. 根据矢量基元差分运算构建各阶多极子模型, 获得了几乎与频率无关的模态函数, 并经加权计算可在低频条件下实现超指向性波束, 以解决阵列孔径对波束性能的限制. 同时, 结合输出信噪比最大准则所得波束, 分析了超指向性波束形成算法的稳定性与波导的影响程度, 探索模态阶数与阵列参数的选取原则. 通过阵列性能的仿真计算与实际阵列的测量数据表明, 该算法可在小尺寸阵列孔径下获得良好的阵列波束, 兼具了水下线型超指向性阵和环形超指向性阵的优点, 可有效实现水下低频声源的水平方位估计; 且波束性能可通过调节模态阶数与基元间距以达到最佳, 并受水下声波导多途与频散效应影响有限.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回