搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于简正波模态消频散变换的声源距离深度估计方法

郭晓乐 杨坤德 马远良 杨秋龙

引用本文:
Citation:

一种基于简正波模态消频散变换的声源距离深度估计方法

郭晓乐, 杨坤德, 马远良, 杨秋龙

A source range and depth estimation method based on modal dedispersion transform

Guo Xiao-Le, Yang Kun-De, Ma Yuan-Liang, Yang Qiu-Long
PDF
导出引用
  • 针对浅海环境中传播的低频宽带水声脉冲信号,基于简正波水平波数差和波导不变量之间的关系,本文提出了一种利用距离-频散参数二维平面聚焦测距与匹配模态能量定深的目标声源定位方法.首先,通过将由频散参数和波导不变量表示的前几阶模态相速度与由环境模型计算的相速度进行对比分析,从而估计出前几阶模态的频散参数和环境的波导不变量.其次,利用估计出的频散参数值和波导不变量对接收信号进行消频散变换处理,只有当接收信号的距离参数等于目标声源距离时,各号简正波的幅度均达到最大值,在距离-频散参数二维平面上,出现声压聚焦的现象,利用此现象可以估计目标声源的距离.不仅如此,消频散变换后的接收信号,前几阶模态在时域上明显地分离开来,可以准确地估计出前几阶模态的能量,采用多模态能量匹配的方式,可以估计出目标声源的深度.最后,通过对仿真和冬季获得的气枪信号数据处理结果验证了本文方法的有效性.
    The wideband source localization is analysed widely in shallow water. It is pointed out that its performance is poor when the number of array elements is few or the ocean environment is uncertain. A method of estimating the range and depth is studied by using a single hydrophone based on the relationship of the horizontal wavenumber difference between two modes with the waveguide invariant for low frequency underwater acoustic pulse signals in a range-independent shallow water waveguide. This localization method estimates the source range by using the rangedispersion two-dimensional(2D) plane focus phenomenon and also the source depth by matching the modal energy. So it can separately estimate the source range and source depth by single hydrophone. First, the signal received on a single hydrophone can be decomposed into a series of modes within the framework of normal mode theory. In order to obtain a better localization performance, the first few order modal dispersion parameters and waveguide invariant are regarded as the unknown parameters. And then the first few order modal dispersion parameters and waveguide invariant can be estimated by comparing the differences between the modal phase velocity calculated by Eq.(8) and that calculated by the Kraken model. Second, using the estimated dispersion parameters and waveguide invariant for dedispersion transform, the amplitudes of each normal mode can achieve maximum values but only when the range of the received signal after dedispersion transform is equal to the range of source. On range-dispersion 2D plane, there appears the sound pressure focus phenomenon, and this phenomenon can be used to estimate the source range. Simulation results from a shallow water Pekeris waveguide show that the time-frequency distribution represents well the dispersion characteristics of the underwater acoustic pulse signal and the dedisperision transform can eliminate this dispersion at the range of source, so that the source range can be estimated. Besides, the first few order modal signals received are clearly separated in time domain after dedispersion transform, and the first few order modal energy can be calculated accurately. So the source depth can be estimated by matching the modal energy. The errors in range estimation and depth estimation are little in simulation. Finally, the data collected from airgun sources during an experiment in the shallow water are used to verify the presented method, and the experimental results obtained using airgun sources on a straight line are shown. The presented method is very significant for estimating the range and depth in shallow water.
      通信作者: 杨坤德, ykdzym@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11174235)资助的课题.
      Corresponding author: Yang Kun-De, ykdzym@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 11174235).
    [1]

    Duan R, Yang K D, Ma Y L 2014 J. Acoust. Soc. Am. 136 EL159

    [2]

    Li K, Fang S L, An L 2013 Acta Phys. Sin. 62 094303(in Chinese)[李焜, 方世良, 安良2013物理学报62 094303]

    [3]

    Qi Y B, Zhou S H, Zhang R H, Ren Y 2015 Acta Phys. Sin. 64 074301(in Chinese)[戚聿波, 周士弘, 张仁和, 任云2015物理学报64 074301]

    [4]

    Bucker H P 1976 J. Acoust. Soc. Am. 59 368

    [5]

    Baggeroer A B, Kuperman W A, Mikhalevsky P N 1993 IEEE J. Ocean. Eng. 18 401

    [6]

    Preisig J C 1994 IEEE Trans. Signal Proces. 42 1305

    [7]

    Thode A M 2000 J. Acoust. Soc. Am. 108 1582

    [8]

    Thode A M, Kuperman W A, D'Spain G L, Hodgkiss W S 2000 J. Acoust. Soc. Am. 107 278

    [9]

    Zhao Z D, Wang N, Gao D Z, Wang H Z 2010 Chin. Phys. Lett. 27 064301

    [10]

    Bonnel J, Gervaise C, Roux P, Nicolas B, Mars J I 2011 J. Acoust. Soc. Am. 130 61

    [11]

    Bonnel J, Gervaise C, Nicolas B, Mars J I 2012 J. Acoust. Soc. Am. 131 119

    [12]

    Bonnel J, Nicolas B, Mars J I, Walker S C 2010 J. Acoust. Soc. Am. 128 719

    [13]

    Gao D Z, Wang N, Wang H Z 2010 J. Comput. Acoust. 18 245

    [14]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2000 Computational Ocean Acoustics (Vol. 2)(New York:American Institute of Physics) p67

    [15]

    Brekhovskikh L M, Lysanov Y P 2003 Fundamentals of Ocean Acoustics (Vol. 3)(New York:Springer-Verlag) p101

    [16]

    Grachev G A 1993 Acoust. Phys. 39 33

    [17]

    Wang N, Gao D Z, Wang H Z 201 J. Harbin Eng. Univ. 31 825(in Chinese)[王宁, 高大治, 王好忠201哈尔滨工程大学学报31 825]

    [18]

    Porter M B 1991 The KRAKEN Normal Mode Program (La Spezia:SACLANT Undersea Research Center) Technical Report SM-245

    [19]

    Gao D Z, Wang N, Wang H Z 2013 Sci. China G 43 s159(in Chinese)[高大治, 王宁, 王好忠2013中国科学G 43 s159]

    [20]

    Wang H Z, Wang N, Gao D Z 2011 Chin. Phys. Lett. 28 114302

  • [1]

    Duan R, Yang K D, Ma Y L 2014 J. Acoust. Soc. Am. 136 EL159

    [2]

    Li K, Fang S L, An L 2013 Acta Phys. Sin. 62 094303(in Chinese)[李焜, 方世良, 安良2013物理学报62 094303]

    [3]

    Qi Y B, Zhou S H, Zhang R H, Ren Y 2015 Acta Phys. Sin. 64 074301(in Chinese)[戚聿波, 周士弘, 张仁和, 任云2015物理学报64 074301]

    [4]

    Bucker H P 1976 J. Acoust. Soc. Am. 59 368

    [5]

    Baggeroer A B, Kuperman W A, Mikhalevsky P N 1993 IEEE J. Ocean. Eng. 18 401

    [6]

    Preisig J C 1994 IEEE Trans. Signal Proces. 42 1305

    [7]

    Thode A M 2000 J. Acoust. Soc. Am. 108 1582

    [8]

    Thode A M, Kuperman W A, D'Spain G L, Hodgkiss W S 2000 J. Acoust. Soc. Am. 107 278

    [9]

    Zhao Z D, Wang N, Gao D Z, Wang H Z 2010 Chin. Phys. Lett. 27 064301

    [10]

    Bonnel J, Gervaise C, Roux P, Nicolas B, Mars J I 2011 J. Acoust. Soc. Am. 130 61

    [11]

    Bonnel J, Gervaise C, Nicolas B, Mars J I 2012 J. Acoust. Soc. Am. 131 119

    [12]

    Bonnel J, Nicolas B, Mars J I, Walker S C 2010 J. Acoust. Soc. Am. 128 719

    [13]

    Gao D Z, Wang N, Wang H Z 2010 J. Comput. Acoust. 18 245

    [14]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2000 Computational Ocean Acoustics (Vol. 2)(New York:American Institute of Physics) p67

    [15]

    Brekhovskikh L M, Lysanov Y P 2003 Fundamentals of Ocean Acoustics (Vol. 3)(New York:Springer-Verlag) p101

    [16]

    Grachev G A 1993 Acoust. Phys. 39 33

    [17]

    Wang N, Gao D Z, Wang H Z 201 J. Harbin Eng. Univ. 31 825(in Chinese)[王宁, 高大治, 王好忠201哈尔滨工程大学学报31 825]

    [18]

    Porter M B 1991 The KRAKEN Normal Mode Program (La Spezia:SACLANT Undersea Research Center) Technical Report SM-245

    [19]

    Gao D Z, Wang N, Wang H Z 2013 Sci. China G 43 s159(in Chinese)[高大治, 王宁, 王好忠2013中国科学G 43 s159]

    [20]

    Wang H Z, Wang N, Gao D Z 2011 Chin. Phys. Lett. 28 114302

  • [1] 李永飞, 郭瑞明, 赵航芳. 浅海内波环境下声场干涉条纹的稀疏重建. 物理学报, 2023, 72(7): 074301. doi: 10.7498/aps.72.20221932
    [2] 杨超, 陈澍. 淬火动力学中的拓扑不变量. 物理学报, 2019, 68(22): 220304. doi: 10.7498/aps.68.20191410
    [3] 宋文华, 王宁, 高大治, 王好忠, 屈科. 波导不变量谱值及其分离方法. 物理学报, 2017, 66(11): 114301. doi: 10.7498/aps.66.114301
    [4] 戚聿波, 周士弘, 张仁和, 任云. 一种基于β-warping变换算子的被动声源距离估计方法. 物理学报, 2015, 64(7): 074301. doi: 10.7498/aps.64.074301
    [5] 鹿力成, 马力. 基于Warping变换的波导时频分析. 物理学报, 2015, 64(2): 024305. doi: 10.7498/aps.64.024305
    [6] 丁琦, 郝爱晶. CDG方程和耦合KdV-MKdV方程的微分不变量. 物理学报, 2014, 63(11): 110503. doi: 10.7498/aps.63.110503
    [7] 林旺生, 梁国龙, 王燕, 付进, 张光普. 运动目标辐射声场干涉结构映射域特征研究. 物理学报, 2014, 63(3): 034306. doi: 10.7498/aps.63.034306
    [8] 宋文华, 胡涛, 郭圣明, 马力. 浅海内波影响下的波导不变量变化特性分析. 物理学报, 2014, 63(19): 194303. doi: 10.7498/aps.63.194303
    [9] 林旺生, 梁国龙, 付进, 张光普. 浅海矢量声场干涉结构形成机理及试验研究. 物理学报, 2013, 62(14): 144301. doi: 10.7498/aps.62.144301
    [10] 余赟, 惠俊英, 陈阳, 惠娟, 殷敬伟. 基于时空滤波理论的低频声场干涉结构研究. 物理学报, 2012, 61(5): 054303. doi: 10.7498/aps.61.054303
    [11] 梅凤翔, 蔡建乐. 广义Birkhoff系统的积分不变量. 物理学报, 2008, 57(8): 4657-4659. doi: 10.7498/aps.57.4657
    [12] 罗绍凯. Lagrange系统一类新型的非Noether绝热不变量——Lutzky型绝热不变量. 物理学报, 2007, 56(10): 5580-5584. doi: 10.7498/aps.56.5580
    [13] 张 毅. Birkhoff系统的一类新型绝热不变量. 物理学报, 2006, 55(8): 3833-3837. doi: 10.7498/aps.55.3833
    [14] 马中骐, 许伯威. 精确的量子化条件和不变量. 物理学报, 2006, 55(4): 1571-1579. doi: 10.7498/aps.55.1571
    [15] 张毅. 约束哈密顿系统在相空间中的精确不变量与绝热不变量. 物理学报, 2002, 51(11): 2417-2422. doi: 10.7498/aps.51.2417
    [16] 乔永芬, 李仁杰, 赵淑红. 高维增广相空间中广义力学系统的对称性和不变量. 物理学报, 2001, 50(5): 811-815. doi: 10.7498/aps.50.811
    [17] 符 建, 高孝纯, 许晶波, 邹旭波. 与不变量有关的幺正变换方法和含时均匀电场中的量子Dirac场的演化. 物理学报, 1999, 48(6): 1011-1022. doi: 10.7498/aps.48.1011
    [18] 赖云忠, 梁九卿. 哈密顿算符是SU(1,1)和SU(2)算子含时线性组合量子系统的时间演变及厄密不变量. 物理学报, 1996, 45(5): 738-746. doi: 10.7498/aps.45.738
    [19] 张耀中. 量子Uq(SU(1,1))群,普适R矩阵和Casimir不变量. 物理学报, 1994, 43(2): 169-174. doi: 10.7498/aps.43.169
    [20] 孙宏林, 张纲, 郭东耀. 双波长双相角结构不变量的比邻原理. 物理学报, 1989, 38(5): 824-828. doi: 10.7498/aps.38.824
计量
  • 文章访问数:  6994
  • PDF下载量:  375
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-18
  • 修回日期:  2016-06-15
  • 刊出日期:  2016-11-05

/

返回文章
返回