搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单片集成放大反馈激光器的脉冲包络动力学实验研究

陈熙 赵玲娟 陈建军 王会苹 吴正茂 陆丹 夏光琼

引用本文:
Citation:

单片集成放大反馈激光器的脉冲包络动力学实验研究

陈熙, 赵玲娟, 陈建军, 王会苹, 吴正茂, 陆丹, 夏光琼

Experimental investigations on the dynamical characteristics of pulse packages in a monolithically integrated amplified feedback laser

Chen Xi, Zhao Ling-Juan, Chen Jian-Jun, Wang Hui-Ping, Wu Zheng-Mao, Lu Dan, Xia Guang-Qiong
PDF
导出引用
  • 实验研究了由分布反馈激光器区(DFB区)、相位控制区(P区)以及放大反馈区(A区)所构成的三段式单片集成放大反馈激光器(AFL)所产生的脉冲包络(PPs)的动力学特征,并分析了P区电流IP和A区电流IA对PPs的重复频率PP以及包络规则性的影响.研究结果表明:DFB区电流IDFB相对较大时,AFL存在两个模式,此时通过选取合适的IP和IA可使AFL工作在PPs动力学状态;对于一给定的IP,IA在两个分离区域内可使AFL呈现PPs状态.随着IA的增加,在IA相对较小的区域,AFL输出PPs的重复频率PP以及表征PPs规则性的时间序列自相关函数的次最大值均呈现单调下降趋势.而在IA相对较大的区域,PP呈现出先减小然后小幅波动的变化趋势,而则总体呈现先增加后减小的趋势;对于一给定的IA,IP的变化也会对AFL输出PPs的特性产生显著影响,在AFL呈现PPs状态所要求的IP的变化范围内,随着IP的增加,PP呈现出先减小后增大而则呈现先增加后减小的变化趋势.通过观测IA,IP连续变化时AFL的动力学特性,确定了AFL呈现PPs在IA和IP构成的参量空间的分布图谱.
    Under suitable external perturbation such as optical feedback, optical injection or optoelectronic feedback, semiconductor lasers can be driven to realize diverse dynamic outputs including period-one, period-two, multi-period, pulse packages(PPs), chaos, etc., which have potential applications in optical secure communications, microwave photonics, lidar, high speed random signal generation, etc.. For the PPs dynamics, most of previous relevant investigations are usually based on a system composed of discrete elements. In this work, we experimentally investigate the PP dynamical characteristics in a three-section monolithically integrated amplified feedback laser(AFL) composed of a distributed feedback(DFB) laser section, a phase(P) section, and an amplified feedback(A) section. For the AFL, the sections P and A act as a compounded feedback cavity in which the feedback phase and strength can be varied by adjusting the current in section P(IP) and the current in section A(IA), respectively. Via the power spectrum and self-correlation function curve of the time series output from the AFL, the influences of IP and IA on repeated frequency(PP) and regularity of PPs are analyzed in detail. The results indicate that, for the section DFB, whose current(IDFB) is biased at a relatively large level, the AFL can realize two-mode oscillation. After further choosing appropriate IP and IA, the AFL can behave as the dynamical state of PPs. Under IDFB=86.15 mA and IP=96.00 mA, through varying IA in a range of 6.50-10.50 mA, there exist two separated regions for IA to make the AFL operate at PPs. For the region with relatively small value of IA, both PP and the secondary maximum() of self-correlation curve characterizing the regularity of PPs monotonically decrease with the increase of IA. However, for the region with relatively large value of IA, with the increase of IA, PP first decreases and then fluctuates in a tiny range, but first increases, and further reaches an extreme value, and then decreases. Under IDFB=86.15 mA and IA=9.00 mA, the output characteristics of PPs are significantly affected by IP. With IP increasing from 90.5 mA to 96.5 mA, PP first decreases, and then increases after reaching a minimal value, meanwhile shows an approximately opposite variation trend. Finally, for IDFB=86.15 mA, the mapping of PPs in the parameter space of IP and IA is given and the evolution regularities of PPs are also presented.
      通信作者: 夏光琼, gqxia@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61275116,61475127,61575163)资助的课题.
      Corresponding author: Xia Guang-Qiong, gqxia@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 61275116, 61475127, 61575163).
    [1]

    Lin C F, Su Y S, Wu B R 2002 IEEE Photon. Technol. Lett. 14 3

    [2]

    Koyama F 2006 J. Lightwave Technol. 24 4502

    [3]

    Iga K 2000 IEEE J. Sel. Top. Quantum Electron. 6 1201

    [4]

    Hu H P, Yu Z L, Liu L F 2012 Acta Phys. Sin. 61 190504(in Chinese)[胡汉平, 于志良, 刘凌锋2012物理学报61 190504]

    [5]

    Kim B, Locquet A, Choi D, Citrin D S 2015 Phys. Rev. A 91 061802

    [6]

    Zhong D Z, Ji Y Q, Deng T, Zhou K L 2015 Acta Phys. Sin. 64 114203(in Chinese)[钟东洲, 计永强, 邓涛, 周开利2015物理学报64 114203]

    [7]

    Lenstra D, Verbeek B H, Den Boef A J 1985 IEEE J. Quantum Electron. 21 674

    [8]

    Kong L Q, Wang A B, Wang H H, Wang Y C 2008 Acta Phys. Sin. 57 2266(in Chinese)[孔令琴, 王安帮, 王海红, 王云才2008物理学报57 2266]

    [9]

    Hong Y H, Spencer P S, Shore K A 2004 Opt. Lett. 29 2151

    [10]

    Li N Q, Pan W, Xiang S Y, Luo B, Yan L S, Zou X H 2013 Appl. Opt. 52 1523

    [11]

    Liu H J, Feng J C 2009 Acta Phys. Sin. 58 1484(in Chinese)[刘慧杰, 冯久超2009物理学报58 1484]

    [12]

    Pan B W, Lu D, Sun Y, Yu L Q, Zhang L M, Zhao L J 2014 Opt. Lett. 39 6395

    [13]

    Jin S Z, Li Y Q, Xiao M 1996 Appl. Opt. 35 1436

    [14]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991

    [15]

    Tager A A, Elenkrig B B 1993 IEEE J. Quantum Electron. 29 2886

    [16]

    Heil T, Fischer I, Elsäßer W, Gavrielides A 2001 Phys. Rev. Lett. 87 243901

    [17]

    Tabaka A, Panajotov K, Veretennicoff I, Sciamanna M 2004 Phys. Rev. E 70 036221

    [18]

    Tabaka A, Peil M, Sciamanna M, Fischer I, Elsäßer W, Thienpont H, Veretennicoff I, Panajotov K 2006 Phys. Rev. A 73 013810

    [19]

    Peil M, Fischer I, Elsäßer W 2006 Phys. Rev. A 73 023805

    [20]

    Koch T L, Koren U 1991 IEEE J. Quantum Electron. 27 641

    [21]

    Charbonneau S, Koteles E S, Poole P J, He J J, Aers G C, Haysom J, Buchanan M, Feng Y, Delage A, Yang F, Davies M, Goldberg R D, Piva P G, Mitchell I V 1998 IEEE J. Sel. Top. Quantum Electron. 4 772

    [22]

    Yu L Q, Lu D, Pan B W, Zhao L J, Wu J G, Xia G Q, Wu Z M, Wang W 2014 J. Lightwave Technol. 32 3595

    [23]

    Monfils I, Cartledge J C 2009 J. Lightwave Technol. 27 619

    [24]

    Bauer S, Brox O, Kreissl J, Sahin G, Sartorius B 2002 Electron. Lett. 38 334

    [25]

    Yee D S, Leem Y A, Kim S T, Park K H, Kim B G 2007 IEEE J. Quantum Electron. 43 1095

    [26]

    Bauer S, Brox O, Kreissl J, Sartorius B, Radziunas M, Sieber J, Wnsche H J, Henneberger F 2004 Phys. Rev. E 69 016206

    [27]

    Loose A, Goswami B K, Wnsche H J, Henneberger F 2009 Phys. Rev. E 79 036211

    [28]

    Wu J G, Zhao L J, Wu Z M, Lu D, Tang X, Zhong Z Q, Xia G Q 2013 Opt. Express 21 23358

    [29]

    Toomey J P, Kane D M, Mcmahon C, Argyris A, Syvridis D 2015 Opt. Express 23 18754

  • [1]

    Lin C F, Su Y S, Wu B R 2002 IEEE Photon. Technol. Lett. 14 3

    [2]

    Koyama F 2006 J. Lightwave Technol. 24 4502

    [3]

    Iga K 2000 IEEE J. Sel. Top. Quantum Electron. 6 1201

    [4]

    Hu H P, Yu Z L, Liu L F 2012 Acta Phys. Sin. 61 190504(in Chinese)[胡汉平, 于志良, 刘凌锋2012物理学报61 190504]

    [5]

    Kim B, Locquet A, Choi D, Citrin D S 2015 Phys. Rev. A 91 061802

    [6]

    Zhong D Z, Ji Y Q, Deng T, Zhou K L 2015 Acta Phys. Sin. 64 114203(in Chinese)[钟东洲, 计永强, 邓涛, 周开利2015物理学报64 114203]

    [7]

    Lenstra D, Verbeek B H, Den Boef A J 1985 IEEE J. Quantum Electron. 21 674

    [8]

    Kong L Q, Wang A B, Wang H H, Wang Y C 2008 Acta Phys. Sin. 57 2266(in Chinese)[孔令琴, 王安帮, 王海红, 王云才2008物理学报57 2266]

    [9]

    Hong Y H, Spencer P S, Shore K A 2004 Opt. Lett. 29 2151

    [10]

    Li N Q, Pan W, Xiang S Y, Luo B, Yan L S, Zou X H 2013 Appl. Opt. 52 1523

    [11]

    Liu H J, Feng J C 2009 Acta Phys. Sin. 58 1484(in Chinese)[刘慧杰, 冯久超2009物理学报58 1484]

    [12]

    Pan B W, Lu D, Sun Y, Yu L Q, Zhang L M, Zhao L J 2014 Opt. Lett. 39 6395

    [13]

    Jin S Z, Li Y Q, Xiao M 1996 Appl. Opt. 35 1436

    [14]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991

    [15]

    Tager A A, Elenkrig B B 1993 IEEE J. Quantum Electron. 29 2886

    [16]

    Heil T, Fischer I, Elsäßer W, Gavrielides A 2001 Phys. Rev. Lett. 87 243901

    [17]

    Tabaka A, Panajotov K, Veretennicoff I, Sciamanna M 2004 Phys. Rev. E 70 036221

    [18]

    Tabaka A, Peil M, Sciamanna M, Fischer I, Elsäßer W, Thienpont H, Veretennicoff I, Panajotov K 2006 Phys. Rev. A 73 013810

    [19]

    Peil M, Fischer I, Elsäßer W 2006 Phys. Rev. A 73 023805

    [20]

    Koch T L, Koren U 1991 IEEE J. Quantum Electron. 27 641

    [21]

    Charbonneau S, Koteles E S, Poole P J, He J J, Aers G C, Haysom J, Buchanan M, Feng Y, Delage A, Yang F, Davies M, Goldberg R D, Piva P G, Mitchell I V 1998 IEEE J. Sel. Top. Quantum Electron. 4 772

    [22]

    Yu L Q, Lu D, Pan B W, Zhao L J, Wu J G, Xia G Q, Wu Z M, Wang W 2014 J. Lightwave Technol. 32 3595

    [23]

    Monfils I, Cartledge J C 2009 J. Lightwave Technol. 27 619

    [24]

    Bauer S, Brox O, Kreissl J, Sahin G, Sartorius B 2002 Electron. Lett. 38 334

    [25]

    Yee D S, Leem Y A, Kim S T, Park K H, Kim B G 2007 IEEE J. Quantum Electron. 43 1095

    [26]

    Bauer S, Brox O, Kreissl J, Sartorius B, Radziunas M, Sieber J, Wnsche H J, Henneberger F 2004 Phys. Rev. E 69 016206

    [27]

    Loose A, Goswami B K, Wnsche H J, Henneberger F 2009 Phys. Rev. E 79 036211

    [28]

    Wu J G, Zhao L J, Wu Z M, Lu D, Tang X, Zhong Z Q, Xia G Q 2013 Opt. Express 21 23358

    [29]

    Toomey J P, Kane D M, Mcmahon C, Argyris A, Syvridis D 2015 Opt. Express 23 18754

  • [1] 杨生辉, 董明义, 渠超越, 田兴成, 董静, 吴冶, 马骁妍, 章红宇, 江晓山, 欧阳群, 李岚坤, 郑国恒. 基于单片有源像素传感器的探测模块测试研究. 物理学报, 2021, 70(17): 170702. doi: 10.7498/aps.70.20210464
    [2] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用. 物理学报, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [3] 王楠, 阮双琛. 啁啾脉冲放大激光系统中展宽器色散的解析算法. 物理学报, 2020, 69(2): 024201. doi: 10.7498/aps.69.20191587
    [4] 叶焓, 韩勤, 吕倩倩, 潘盼, 安俊明, 王玉冰, 刘荣瑞, 侯丽丽. 基于选区外延技术的单片集成阵列波导光栅与单载流子探测器的端对接设计. 物理学报, 2017, 66(15): 158502. doi: 10.7498/aps.66.158502
    [5] 韩旭, 冯国英, 武传龙, 姜东升, 周寿桓. 掺镱光纤激光器自脉冲与自脉冲内的自锁模研究. 物理学报, 2012, 61(11): 114204. doi: 10.7498/aps.61.114204
    [6] 曹士英, 孟飞, 方占军, 李天初. 掺Er光纤飞秒激光器中高信噪比载波包络位相偏移频率获取的实验研究. 物理学报, 2012, 61(6): 064208. doi: 10.7498/aps.61.064208
    [7] 曹士英, 蔡岳, 王贵重, 孟飞, 张志刚, 方占军, 李天初. 掺Er光纤飞秒激光器载波包络位相偏移的探测. 物理学报, 2011, 60(9): 094208. doi: 10.7498/aps.60.094208
    [8] 宋立伟, 李闯, 王丁, 许灿华, 冷雨欣, 李儒新. 载波-包络相位稳定的周期量级近红外超短脉冲激光系统. 物理学报, 2011, 60(5): 054206. doi: 10.7498/aps.60.054206
    [9] 任广军, 魏臻, 姚建铨. 调Q脉冲保偏光纤激光器的研究. 物理学报, 2009, 58(2): 941-945. doi: 10.7498/aps.58.941
    [10] 王建良, 张春梅, 宋立伟, 冷雨欣. 双光路测量红外飞秒激光脉冲的载波包络相位稳定性. 物理学报, 2009, 58(6): 3966-3970. doi: 10.7498/aps.58.3966
    [11] 邓玉强, 曹士英, 于 靖, 徐 涛, 王清月, 张志刚. 小波变换提取放大超短脉冲载波-包络相位的研究. 物理学报, 2008, 57(11): 7017-7021. doi: 10.7498/aps.57.7017
    [12] 朱江峰, 杜 强, 王向林, 滕 浩, 韩海年, 魏志义, 侯 洵. 飞秒钛宝石放大激光脉冲的载波包络相位测量与控制. 物理学报, 2008, 57(12): 7753-7757. doi: 10.7498/aps.57.7753
    [13] 韩海年, 张 炜, 佟娟娟, 王延辉, 王 鹏, 魏志义, 李德华, 沈乃澂, 聂玉昕, 董太乾. 利用锁相环和TV-Rb钟控制飞秒激光脉冲的载波包络相移. 物理学报, 2007, 56(1): 291-295. doi: 10.7498/aps.56.291
    [14] 韩海年, 赵研英, 张 炜, 朱江峰, 王 鹏, 魏志义, 李师群. PPLN晶体差频测量飞秒激光脉冲的载波包络相移. 物理学报, 2007, 56(5): 2756-2759. doi: 10.7498/aps.56.2756
    [15] 赵 谦, 潘教青, 张 靖, 李宝霞, 周 帆, 王宝军, 王鲁峰, 边 静, 赵玲娟, 王 圩. 用于10Gb/s传输系统的电吸收调制器与分布反馈激光器集成光源. 物理学报, 2006, 55(3): 1259-1263. doi: 10.7498/aps.55.1259
    [16] 赵 谦, 潘教青, 张 靖, 周光涛, 伍 剑, 周 帆, 王宝军, 王鲁峰, 王 圩. 超低压选择区域生长法制备产生10GHz重复率超短光脉冲的级联电吸收调制器与分布反馈激光器单片集成光源. 物理学报, 2006, 55(1): 261-266. doi: 10.7498/aps.55.261
    [17] 韩海年, 魏志义, 张 军, 聂玉昕. 飞秒钛宝石激光脉冲的载波包络相移测量研究. 物理学报, 2005, 54(1): 155-158. doi: 10.7498/aps.54.155
    [18] 程兆谷, 李现勤, 柴雄良, 高海军, 刘翠青. 预电离脉冲群开关技术高功率脉冲CO2激光器. 物理学报, 2004, 53(5): 1362-1366. doi: 10.7498/aps.53.1362
    [19] 孙军强, 黄德修, 李再光. 掺铒光纤激光器的自持脉冲. 物理学报, 1996, 45(6): 960-965. doi: 10.7498/aps.45.960
    [20] 方洪烈, 傅淑芬, G. T. 穆尔. 自由电子激光器的稳定脉冲解. 物理学报, 1984, 33(7): 935-942. doi: 10.7498/aps.33.935
计量
  • 文章访问数:  5177
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-20
  • 修回日期:  2016-08-16
  • 刊出日期:  2016-11-05

/

返回文章
返回