搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于选区外延技术的单片集成阵列波导光栅与单载流子探测器的端对接设计

叶焓 韩勤 吕倩倩 潘盼 安俊明 王玉冰 刘荣瑞 侯丽丽

引用本文:
Citation:

基于选区外延技术的单片集成阵列波导光栅与单载流子探测器的端对接设计

叶焓, 韩勤, 吕倩倩, 潘盼, 安俊明, 王玉冰, 刘荣瑞, 侯丽丽

Butt-joint design in a uni-traveling carrier photodiode array monolithic with an arrayed waveguide grating by the selective area growth technique

Ye Han, Han Qin, Lü Qian-Qian, Pan Pan, An Jun-Ming, Wang Yu-Bing, Liu Rong-Rui, Hou Li-Li
PDF
导出引用
  • 选区外延技术是实现有源与无源光器件单片集成的一种有效的工艺手段,但同时对两种器件在异质生长界面处的对接结构提出了更高的设计要求.本文通过选区外延技术实现了InP基O波段4通道阵列波导光栅与单载流子探测器的单片集成.通过光学仿真重点研究了选区外延后界面处形貌对无源波导结构与有源光探测器间光耦合效率的影响,包括伸长的光学匹配层、二次外延生长边界位置、波导刻蚀边界位置等因素.研究结果表明,在保证二次外延生长边界对准异质对接界面时,将光学匹配层伸出探测器前端10 m并与外延边界无缝对接既可以保证高效的光传输效率(或探测器量子效率),又可以避免外延界面处的异常生长对器件制备工艺的影响,保证生长工艺与器件制备工艺的兼容性.成功制备的单片集成芯片具有高达76%的探测器量子效率,证明了对接方案的有效性.同时,集成芯片的低串扰(-22 dB)与解复用特性展示出其作为解复用光接收芯片具有巨大潜力.
    Monolithic integration of an InP-based O-band 4-channel arrayed waveguide grating (AWG) to a uni-traveling carrier photodiode (UTC-PD) array is realized by the selective area growth (SAG) technique. The passive-active buttjoint design is introduced and experimentally proved to ensure both good compatibility between the PD fabrication process and the SAG technique, and high photodiode quantum efficiency under the complex butt-joint geometry. An extended coupling layer is adopted between the AWG output waveguides and the PD mesa. The extended coupling layer length, the regrowth boundary edge position and the AWG etching edge position relative to the heterogeneous butt-joint boundary, and the refractive indices of the PD collector and coupling layer are optically simulated and optimized by a finite-difference time-domain method. It is found that the extended coupling layer, compared with the un-extended situation, ensures a good matched optical field from AWG to PD and could reduce nearly 30% quantum efficiency loss when connecting seamlessly to the regrown InP AWG top cladding layer. A stable high efficiency around 80% is maintained within an extended layer length from 7.5 m to 15.0 m. The regrowth boundary edge into the coupling region will cause a drastic efficiency oscillation up to 20% period with the increase of distance. The efficiency drop is also attributed to the light scattering at the regrowth boundary edge, caused by the optical field mismatch, while the oscillation comes from the alternative light power concentration between the coupling layer and the core layer, for the light scattering is only obvious when the light power is well concentrated in the coupling layer. The AWG etching edge position deviation from the butt-joint boundary, however, exerts little influence on the PD quantum efficiency, which is believed not to bring obvious coupling loss during device fabrication. The higher UTC-PD collector refractive index is proved to be crucial for further better optical coupling from the coupling layer to the PD, with quantum efficiency rapidly increasing from around 0.1 to 0.8 when the index is increased from 3.20 to 3.42. By comparison, the efficiency is little affected by the coupling layer refractive index from 3.34 to 3.42.All things considered, we select a 10 m extended coupling layer, the refractive indices of both PD collector and the coupling layer to be 3.42, and align both the regrowth boundary edge and the AWG etching edge to the heterogeneous butt-joint boundary, and a PD quantum efficiency of 80% is expected. Owing to the extended coupling layer at the butt-joint, the SAG technique facilitates the PD fabrication process. The overgrown AWG top cladding layer ridge stretches out 4.67 m toward the PD, but not over the mesa yet, hence has little influence on the PD fabrication accuracy. The monolithic chip presents a uniform photodiode quantum efficiency of 76%, which accords well with theoretical value and confirms the butt-joint design. Central wavelengths for the four channels are 1347.0 nm, 1325.0 nm, 1308.0 nm, and 1286.5 nm, respectively. The low crosstalk level (below -22 dB) also indicates a good de-multiplexer performance.
      通信作者: 韩勤, hanqin@semi.ac.cn
    • 基金项目: 国家高技术研究发展计划(批准号:2015AA016902)、国家重点研发计划(批准号:2016YFB0402404)和国家自然科学基金(批准号:61635010,61674136,61435002)资助的课题.
      Corresponding author: Han Qin, hanqin@semi.ac.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No.2015AA016902),the National Key Research and Development Plan of China (Grant No.2016YFB0402404),and the National Natural Science Foundation of China (Grant Nos.61635010,61674136,61435002).
    [1]

    Kish F A, Welch D, Nagarajan R, Pleumeekers J L, Lal V, Ziari M, Nilsson A, Kato M, Murthy S, Evans P, Corzine S W, Mitchell M, Samra P, Missey M, DeMars S, Schneider R P, Reffle M S, Butrie T, Rahn J T, Leeuwen M V, Stewart J W, Lambert D J H, Muthiah R C, Tsai H S, Bostak J S, Dentai A, Wu K T, Sun H, Pavinski D J, Zhang J M, Tang J, McNicol J, Kuntz M, Dominic V, Taylor B D, Salvatore R A, Fisher M, Spannagel A, Strzelecka E, Studenkov P, Raburn M, Williams W, Christini D, Thomson K J, Agashe S S, Malendevich R, Goldfarb G, Melle S, Joyner C, Kaufman M, Grubb S G 2011 IEEE J. Sel. Top. Quantum Electron. 17 1470

    [2]

    Nagarajan R, Joyner C H, Schneider R P J, Bostak J S, Butrie T, Dentai A G, Dominic V G, Evans P W, Kato M, Kauffman M, Lambert D J H, Mathis S K, Mathur A, Miles R H, Mitchell M L, Missey M J, Murthy S, Nilsson A C, Peters F H, Pennypacker S C, Pleumeekers J L, Salvatore R A, Schlenker R K, Taylor R B, Tsai H S, Leeuwen M F V, Webjorn J, Ziari M, Perkins D, Singh J, Grubb S G, Reffle M S, Mehuys D G, Kish F A, Welch D F 2005 IEEE J. Sel. Topics Quantum Electron. 11 50

    [3]

    Tolstikhin V 2013 Proceedings of the 10th Conference on Lasers and Electro-Optics Pacific Rim Kyoto, Japan, June 30-July 4,2013 TuN1-3

    [4]

    Wang Y, Pan J Q, Zhao L J, Zhu H L, Wang W 2010 Chin. Phys. B 19 124215

    [5]

    Bernasconi P, Bhardwaj A, Doerr C R, Zhang L, Sauer N, Buhl L, Yang W, Neilson D T 2007 Proceedings of the 15th Integrated Photonics and Nanophotonics Research and Applications Salt Lake City, Utah, United States, July 8, 2007 IMA4

    [6]

    Yoshikuni Y 2002 IEEE J. Sel. Topics Quantum Electron. 8 1102

    [7]

    Barbarin Y, Leijtens X J M, Bente E A J M, Louzao C M, Kooiman J R, Smit M K 2004 IEEE Photon. Technol. Lett. 16 2478

    [8]

    Pan P, An J M, Wang Y, Zhang J S, Wang L L, Qi Y, Han Q, Hu X W 2015 Opt. Laser Technol. 75 177

    [9]

    Ishibashi T, Kodama S, Shimizu N, Furuta T 1997 Jpn. J. Appl. Phys. 36 6263

    [10]

    Li Z, Pan H P, Chen H, Beling A, Campbell J C 2010 IEEE J. Quantum Electron. 46 626

    [11]

    Zhang R, Hraimel B, Li X, Zhang P, Zhang X P 2013 Opt. Express 21 6943

    [12]

    Li J, Xiong B, Luo Y, Sun C Z, Wang J, Hao Z B, Han Y J, Wang L, Li H T 2016 Opt. Express 24 8420

    [13]

    Kulkova I V, Kadkhodazadeh S, Kuznetsova N, Huck A, Semenova E S, Yvind K 2014 J. Cryst. Growth 402 243

    [14]

    Zhang X L, Lu D, Zhang R K, Wang W, Ji C 2014 Chin. Phys. Lett. 31 064202

    [15]

    Smit M, Leijtens X, Ambrosius H, Bente E, Tol J V D, Smalbrugge B, Vries T D, Geluk E J, Bolk J, Veldhoven R V, Augustin L, Thijs P, D'Agostino D, Rabbani H, Lawniczuk K, Stopinski S, Tahvili S, Corradi A, Kleijn E, Dzibrou D, Felicetti M, Bitincka E, Moskalenko V, Zhao J, Santos R, Gilardi G, Yao W M, Williams K, Stabile P, Kuindersma P, Pello J, Bhat S, Jiao Y Q, Heiss D, Roelkens G, Wale M, Firth P, Soares F, Grote N, Schell M, Debregeas H, Achouche M, Gentner J L, Bakker A, Korthorst T, Gallagher D, Dabbs A, Melloni A, Morichetti F, Melati D, Wonfor A, Penty R, Broeke R, Musk B, Robbins D 2014 Semicond. Sci. Technol. 29 083001

    [16]

    Li M, Chen X F, Su Y K, Wang X J, Chen M H, Dai D X, Liu J G, Zhu N H 2016 IEEE J. Quantum Electron. 52 0601017

    [17]

    Guo J C, Zuo Y H, Zhang Y, Zhang L Z, Cheng B W, Wang Q M 2010 Acta Phys. Sin. 59 4524 (in Chinese) [郭剑川, 左玉华, 张云, 张岭梓, 成步文, 王启明 2010 物理学报 59 4524]

    [18]

    Zang G, Huang Y Q, Luo Y, Duan X F, Ren X M 2014 Acta Phys. Sin. 63 208502 (in Chinese) [臧鸽, 黄永清, 骆扬, 段晓峰, 任晓敏 2014 物理学报 63 208502]

    [19]

    Beling A, Campbell J C 2009 J. Lightw. Technol. 27 343

    [20]

    Shi J W, Wu Y S, Wu C Y, Chiu P H 2005 IEEE Photon. Technol. Lett. 17 1929

    [21]

    Pearsall T P 1982 GaInAsP Alloy Semiconductors (New York: VaJ-BalJou Press) pp362-363

    [22]

    Huang D X 2013 Semiconductor Optoelectronics (2nd Ed.) (Beijing: Publishing House of Electronics Industry) p251 (in Chinese) [黄德修 2013 半导体光电子学 (第2版) (北京:电子工业出版社) 第251页]

  • [1]

    Kish F A, Welch D, Nagarajan R, Pleumeekers J L, Lal V, Ziari M, Nilsson A, Kato M, Murthy S, Evans P, Corzine S W, Mitchell M, Samra P, Missey M, DeMars S, Schneider R P, Reffle M S, Butrie T, Rahn J T, Leeuwen M V, Stewart J W, Lambert D J H, Muthiah R C, Tsai H S, Bostak J S, Dentai A, Wu K T, Sun H, Pavinski D J, Zhang J M, Tang J, McNicol J, Kuntz M, Dominic V, Taylor B D, Salvatore R A, Fisher M, Spannagel A, Strzelecka E, Studenkov P, Raburn M, Williams W, Christini D, Thomson K J, Agashe S S, Malendevich R, Goldfarb G, Melle S, Joyner C, Kaufman M, Grubb S G 2011 IEEE J. Sel. Top. Quantum Electron. 17 1470

    [2]

    Nagarajan R, Joyner C H, Schneider R P J, Bostak J S, Butrie T, Dentai A G, Dominic V G, Evans P W, Kato M, Kauffman M, Lambert D J H, Mathis S K, Mathur A, Miles R H, Mitchell M L, Missey M J, Murthy S, Nilsson A C, Peters F H, Pennypacker S C, Pleumeekers J L, Salvatore R A, Schlenker R K, Taylor R B, Tsai H S, Leeuwen M F V, Webjorn J, Ziari M, Perkins D, Singh J, Grubb S G, Reffle M S, Mehuys D G, Kish F A, Welch D F 2005 IEEE J. Sel. Topics Quantum Electron. 11 50

    [3]

    Tolstikhin V 2013 Proceedings of the 10th Conference on Lasers and Electro-Optics Pacific Rim Kyoto, Japan, June 30-July 4,2013 TuN1-3

    [4]

    Wang Y, Pan J Q, Zhao L J, Zhu H L, Wang W 2010 Chin. Phys. B 19 124215

    [5]

    Bernasconi P, Bhardwaj A, Doerr C R, Zhang L, Sauer N, Buhl L, Yang W, Neilson D T 2007 Proceedings of the 15th Integrated Photonics and Nanophotonics Research and Applications Salt Lake City, Utah, United States, July 8, 2007 IMA4

    [6]

    Yoshikuni Y 2002 IEEE J. Sel. Topics Quantum Electron. 8 1102

    [7]

    Barbarin Y, Leijtens X J M, Bente E A J M, Louzao C M, Kooiman J R, Smit M K 2004 IEEE Photon. Technol. Lett. 16 2478

    [8]

    Pan P, An J M, Wang Y, Zhang J S, Wang L L, Qi Y, Han Q, Hu X W 2015 Opt. Laser Technol. 75 177

    [9]

    Ishibashi T, Kodama S, Shimizu N, Furuta T 1997 Jpn. J. Appl. Phys. 36 6263

    [10]

    Li Z, Pan H P, Chen H, Beling A, Campbell J C 2010 IEEE J. Quantum Electron. 46 626

    [11]

    Zhang R, Hraimel B, Li X, Zhang P, Zhang X P 2013 Opt. Express 21 6943

    [12]

    Li J, Xiong B, Luo Y, Sun C Z, Wang J, Hao Z B, Han Y J, Wang L, Li H T 2016 Opt. Express 24 8420

    [13]

    Kulkova I V, Kadkhodazadeh S, Kuznetsova N, Huck A, Semenova E S, Yvind K 2014 J. Cryst. Growth 402 243

    [14]

    Zhang X L, Lu D, Zhang R K, Wang W, Ji C 2014 Chin. Phys. Lett. 31 064202

    [15]

    Smit M, Leijtens X, Ambrosius H, Bente E, Tol J V D, Smalbrugge B, Vries T D, Geluk E J, Bolk J, Veldhoven R V, Augustin L, Thijs P, D'Agostino D, Rabbani H, Lawniczuk K, Stopinski S, Tahvili S, Corradi A, Kleijn E, Dzibrou D, Felicetti M, Bitincka E, Moskalenko V, Zhao J, Santos R, Gilardi G, Yao W M, Williams K, Stabile P, Kuindersma P, Pello J, Bhat S, Jiao Y Q, Heiss D, Roelkens G, Wale M, Firth P, Soares F, Grote N, Schell M, Debregeas H, Achouche M, Gentner J L, Bakker A, Korthorst T, Gallagher D, Dabbs A, Melloni A, Morichetti F, Melati D, Wonfor A, Penty R, Broeke R, Musk B, Robbins D 2014 Semicond. Sci. Technol. 29 083001

    [16]

    Li M, Chen X F, Su Y K, Wang X J, Chen M H, Dai D X, Liu J G, Zhu N H 2016 IEEE J. Quantum Electron. 52 0601017

    [17]

    Guo J C, Zuo Y H, Zhang Y, Zhang L Z, Cheng B W, Wang Q M 2010 Acta Phys. Sin. 59 4524 (in Chinese) [郭剑川, 左玉华, 张云, 张岭梓, 成步文, 王启明 2010 物理学报 59 4524]

    [18]

    Zang G, Huang Y Q, Luo Y, Duan X F, Ren X M 2014 Acta Phys. Sin. 63 208502 (in Chinese) [臧鸽, 黄永清, 骆扬, 段晓峰, 任晓敏 2014 物理学报 63 208502]

    [19]

    Beling A, Campbell J C 2009 J. Lightw. Technol. 27 343

    [20]

    Shi J W, Wu Y S, Wu C Y, Chiu P H 2005 IEEE Photon. Technol. Lett. 17 1929

    [21]

    Pearsall T P 1982 GaInAsP Alloy Semiconductors (New York: VaJ-BalJou Press) pp362-363

    [22]

    Huang D X 2013 Semiconductor Optoelectronics (2nd Ed.) (Beijing: Publishing House of Electronics Industry) p251 (in Chinese) [黄德修 2013 半导体光电子学 (第2版) (北京:电子工业出版社) 第251页]

  • [1] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能 光电探测器. 物理学报, 2024, 73(5): 056802. doi: 10.7498/aps.73.20231645
    [2] 张逸飞, 刘媛, 梅家栋, 王军转, 王肖沐, 施毅. 基于纳米金属阵列天线的石墨烯/硅近红外探测器. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231657
    [3] 刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁. 硅纳米线阵列光电探测器研究进展. 物理学报, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [4] 杨帅, 张浩, 何珂. 选区外延生长的PbTe-超导杂化纳米线: 一个可能实现拓扑量子计算的新体系. 物理学报, 2023, 72(23): 238101. doi: 10.7498/aps.72.20231603
    [5] 刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华. 具有大光电导增益的氧化镓薄膜基深紫外探测器阵列. 物理学报, 2022, 71(20): 208501. doi: 10.7498/aps.71.20220859
    [6] 张笑, 吕嘉煜, 管焰秋, 李慧, 王锡明, 张蜡宝, 王昊, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 吴培亨. 超大面积超导纳米线阵列单光子探测器设计与制备. 物理学报, 2022, 71(24): 248501. doi: 10.7498/aps.71.20221569
    [7] 李科, 董明利, 袁配, 鹿利单, 孙广开, 祝连庆. 基于阵列波导光栅的光纤布拉格光栅解调技术综述. 物理学报, 2022, 71(9): 094207. doi: 10.7498/aps.71.20212063
    [8] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用. 物理学报, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [9] 杨生辉, 董明义, 渠超越, 田兴成, 董静, 吴冶, 马骁妍, 章红宇, 江晓山, 欧阳群, 李岚坤, 郑国恒. 基于单片有源像素传感器的探测模块测试研究. 物理学报, 2021, 70(17): 170702. doi: 10.7498/aps.70.20210464
    [10] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明. 光栅局域调控二维光电探测器. 物理学报, 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [11] 王尘, 许怡红, 李成, 林海军. 高性能SOI基GePIN波导光电探测器的制备及特性研究. 物理学报, 2017, 66(19): 198502. doi: 10.7498/aps.66.198502
    [12] 陈熙, 赵玲娟, 陈建军, 王会苹, 吴正茂, 陆丹, 夏光琼. 单片集成放大反馈激光器的脉冲包络动力学实验研究. 物理学报, 2016, 65(21): 214209. doi: 10.7498/aps.65.214209
    [13] 汪建元, 王尘, 李成, 陈松岩. 硅基锗薄膜选区外延生长研究. 物理学报, 2015, 64(12): 128102. doi: 10.7498/aps.64.128102
    [14] 张治国. 垂直多结光伏型集成硅X射线探测器的实现和实验. 物理学报, 2014, 63(24): 248501. doi: 10.7498/aps.63.248501
    [15] 霍文娟, 谢红云, 梁松, 张万荣, 江之韵, 陈翔, 鲁东. 单载流子传输的双异质结光敏晶体管探测器的研究. 物理学报, 2013, 62(22): 228501. doi: 10.7498/aps.62.228501
    [16] 张岭梓, 左玉华, 曹权, 薛春来, 成步文, 张万昌, 曹学蕾, 王启明. 单载流子光电探测器的高速及高饱和功率的研究. 物理学报, 2012, 61(13): 138501. doi: 10.7498/aps.61.138501
    [17] 张戎, 郭旭光, 曹俊诚. 太赫兹量子阱光电探测器光栅耦合的模拟与优化. 物理学报, 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [18] 孙志斌, 马海强, 雷 鸣, 杨捍东, 吴令安, 翟光杰, 冯 稷. 近红外单光子探测器. 物理学报, 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [19] 熊大元, 曾 勇, 李 宁, 陆 卫. 甚长波量子阱红外探测器光栅耦合的研究. 物理学报, 2006, 55(7): 3642-3648. doi: 10.7498/aps.55.3642
    [20] 赵 谦, 潘教青, 张 靖, 周光涛, 伍 剑, 周 帆, 王宝军, 王鲁峰, 王 圩. 超低压选择区域生长法制备产生10GHz重复率超短光脉冲的级联电吸收调制器与分布反馈激光器单片集成光源. 物理学报, 2006, 55(1): 261-266. doi: 10.7498/aps.55.261
计量
  • 文章访问数:  4650
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-30
  • 修回日期:  2017-05-07
  • 刊出日期:  2017-08-05

/

返回文章
返回