搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高性能SOI基GePIN波导光电探测器的制备及特性研究

王尘 许怡红 李成 林海军

引用本文:
Citation:

高性能SOI基GePIN波导光电探测器的制备及特性研究

王尘, 许怡红, 李成, 林海军

Fabrication and characteristics of high performance SOI-based Ge PIN waveguide photodetector

Wang Chen, Xu Yi-Hong, Li Cheng, Lin Hai-Jun
PDF
导出引用
  • 本文报道了在SOI衬底上外延高质量单晶Ge薄膜并制备高性能不同尺寸Ge PIN波导光电探测器.通过采用原子力显微镜、X射线衍射、拉曼散射光谱表征外延Ge薄膜的表面形貌、晶体质量以及应变参数,结果显示外延Ge薄膜中存在约0.2%左右的张应变,且表面平整,粗糙度为1.12 nm.此外,通过暗电流、光响应度以及3 dB带宽的测试来研究波导探测器的性能,结果表明尺寸为4 m20 m波导探测器在-1 V的反向偏压下暗电流密度低至75 mA/cm2,在1.55 m波长处的响应度为0.58 A/W,在-2 V的反向偏压下的3 dB带宽为5.5 GHz.
    Silicon-based photonics has aroused an increasing interest in the recent year, mainly for optical telecommunications or optical interconnects in microelectronic circuits. The waveguide photodetector is one of the building blocks needed for the implementation of fast silicon photonics integrated circuits. The main considerations for designing such a device are the bandwidth, the power consumption and the responsivity. Germanium is now considered as an ideal candidate for fully integrated receivers based on silicon-on-insulator (SOI) substrates and complementary metal oxide semiconductor (CMOS)-like process because of its large optical absorption coefficient at the wavelength for optical communication. Therefore, the study of high speed and high responsivity Ge waveguide photodetectors is necessary. In this paper, high concentration phosphor doped SOI substrate is achieved by using solid-state source diffusion at first. Secondly, the high quality epitaxial germanium (Ge) is grown on phosphor doped SOI substrate by using low temperature Ge buffer layer technique based on the UHV/CVD system. The surface profile, crystal quality and strain of epitaxial Ge film are characterized by using atomic force microscopy, X-ray diffraction (XRD), and Raman scattering spectrum. The results show that the Ge film has a smooth surface of 1.12 nm roughness and about 0.2% tensile strain, which is verified by XRD characterization result. Thirdly, ptype Ge region is formed by BF2+ implantation, and rapid thermal annealing to repair the implantation damages and activate impurity. Finally, the highperformance Ge PIN waveguide photodetectors with different sizes are fabricated by standard COMS technology. Moreover, the device performances, in terms of dark current versus voltage characteristics, photocurrent responsivity and 3 dB bandwidth, are well studied. The results show that the detector with a size of 4 m20 m demonstrates a dark current density of 75 mA/cm2 at -1 V and a photocurrent responsivity of 0.58 A/W for 1.55 m optical wavelength. In addition, an optical band width of 5.3 GHz at -2 V for 1.55 m is also demonstrated, which is far below theortical value of about 40 GHz. This can mainly be attributed to two aspects. On the one hand, Ge PIN structure contains low temperature Ge buffer layer, which has highdensity dislocation because of large lattice mismatch between Si and Ge. Those dislocations or defects can trap and release the photo-generated carrier, which increases the transit time. On the other hand, the contact characteristics of Al with n+-Si and p+-Ge are not very good, leading to a large contact resistance and RC delay. Through improving the above two aspects, the performance of Ge PIN waveguide photodetector will be further enhanced.
      通信作者: 王尘, chenwang@xmut.edu.cn
    • 基金项目: 厦门理工学院2016年上半年校高层次人才科技类项目(批准号:YKJ16012R)资助的课题.
      Corresponding author: Wang Chen, chenwang@xmut.edu.cn
    • Funds: Project supported by the High Level Talent Project of Xiamen University of Technology, China (Grant No. YKJ16012R).
    [1]

    Jutzi M, Berroth M, Whl G, Oehme M, Kasper E 2005 IEEE Photon. Technol. Lett. 17 1510

    [2]

    Dehlinger G, Ko ester S J, Schaub J D, Chu J O, Ouyang Q C, Grill A 2004 IEEE Photon. Technol. Lett. 16 2547

    [3]

    Liu J, Cannon D D, Wada K, Ishikawa Y, Jongthammanurak S, Danielson D, Michel J, Kimerling L C 2005 Appl. Phys. Lett. 87 011110

    [4]

    Wu Z, Wang C, Yan G M, Liu G Z, Li C, Huang W, Lai H K, Chen S Y 2012 Acta Phys. Sin. 61 186105 (in Chinese)[吴政, 王尘, 严光明, 刘冠州, 李成, 黄巍, 赖虹凯, 陈松岩 2012 物理学报 61 186105]

    [5]

    Xue H Y, Xue C L, Cheng B W, Yu Y D, Wang Q M 2009 Chin. Phys. B 18 1674

    [6]

    Chen H, Verheyen P, de Heyn P, Lepage G, de Coster J, Balakrishnan S, Absil P, Yao W, Shen L, Roelkens G, van Campenhout J 2016 Opt. Express 24 4622

    [7]

    Wang J, Loh W Y, Chua K T, Zang H, Xiong Y Z, Loh T H, Yu M B, Lee S J, Lo G Q, Kwong D L 2008 IEEE Electron Dev. Lett. 29 445

    [8]

    Vivien L, Osmond J, Fdli J M, MarrisMorini D, Crozat P, Damlencourt J F, Cassan E, Lecunff Y, Laval S 2009 Opt. Express 17 6252

    [9]

    Feng D, Liao S, Dong P, Feng N N, Liang H, Zheng D, Kung C C, Fong J, Shafiiha R, Cunningham J, Krishnamoorthy A V, Asghari M 2009 Appl. Phys. Lett. 95 261105

    [10]

    Li C, Xue C L, Li Y M, Li C B, Cheng B W, Wang Q M 2015 Chin. Phys. B 24 038502

    [11]

    Feng N N, Dong P, Zheng D, Liao S, Liang H, Shafiiha R, Feng D, Li G L, Cunningham J E, Krishnamoorthy A V, Asghari M 2010 Opt. Express 18 96

    [12]

    Tu Z, Liu K, Yi H, Zhou R, Wang X, Zhou Z, Chen Z https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8564/1/A-compact-evanescently-coupled-germanium-PIN-waveguide-photodetector/10.1117/12.2001221.short doi:10.1117/12.2001221 2012 Proc. SPIE 8564 85646

    [13]

    Chen C Z, Zheng Y Y, Huang S H, Li C, Lai H K, Chen S Y 2012 Acta Phys. Sin. 61 078104 (in Chinese)[陈城钊, 郑元宇, 黄诗浩, 李成, 赖虹凯, 陈松岩 2012 物理学报 61 078104]

    [14]

    Wang C, Li C, Lin G Y, Lu W F, Wei J B, Huang W, Lai H K, Chen S Y, Di Z F, Zhang M 2014 IEEE Trans. Electron Dev. 61 3060

    [15]

    Murakami Y, Shingyouji T 1994 J. Appl. Phys. 75 3548

    [16]

    Giovane L M, Luan H C, Agarwal A M, Kimerling L C 2001 Appl. Phys. Lett. 78 541

    [17]

    Liu Z, Cheng B, Li Y M, Li C B, Xue C L, Wang Q M 2013 Chin. Phys. B 22 116804

    [18]

    Mitsuru T, Kiyohito M, Masakazu S, Yoshiaki N, Shinichi T 2012 Opt. Express 20 8718

    [19]

    Feng N N, Liao S, Dong P, Zheng D, Liang H, Kung C C, Shafiiha R, Feng D, Li G L, Cunningham John E, Krishnamoorthy A V, Asghari M 2010 Proc. SPIE 7607 760704

    [20]

    Going R, Kim M, Wu M C 2013 Opt. Express 21 22429

  • [1]

    Jutzi M, Berroth M, Whl G, Oehme M, Kasper E 2005 IEEE Photon. Technol. Lett. 17 1510

    [2]

    Dehlinger G, Ko ester S J, Schaub J D, Chu J O, Ouyang Q C, Grill A 2004 IEEE Photon. Technol. Lett. 16 2547

    [3]

    Liu J, Cannon D D, Wada K, Ishikawa Y, Jongthammanurak S, Danielson D, Michel J, Kimerling L C 2005 Appl. Phys. Lett. 87 011110

    [4]

    Wu Z, Wang C, Yan G M, Liu G Z, Li C, Huang W, Lai H K, Chen S Y 2012 Acta Phys. Sin. 61 186105 (in Chinese)[吴政, 王尘, 严光明, 刘冠州, 李成, 黄巍, 赖虹凯, 陈松岩 2012 物理学报 61 186105]

    [5]

    Xue H Y, Xue C L, Cheng B W, Yu Y D, Wang Q M 2009 Chin. Phys. B 18 1674

    [6]

    Chen H, Verheyen P, de Heyn P, Lepage G, de Coster J, Balakrishnan S, Absil P, Yao W, Shen L, Roelkens G, van Campenhout J 2016 Opt. Express 24 4622

    [7]

    Wang J, Loh W Y, Chua K T, Zang H, Xiong Y Z, Loh T H, Yu M B, Lee S J, Lo G Q, Kwong D L 2008 IEEE Electron Dev. Lett. 29 445

    [8]

    Vivien L, Osmond J, Fdli J M, MarrisMorini D, Crozat P, Damlencourt J F, Cassan E, Lecunff Y, Laval S 2009 Opt. Express 17 6252

    [9]

    Feng D, Liao S, Dong P, Feng N N, Liang H, Zheng D, Kung C C, Fong J, Shafiiha R, Cunningham J, Krishnamoorthy A V, Asghari M 2009 Appl. Phys. Lett. 95 261105

    [10]

    Li C, Xue C L, Li Y M, Li C B, Cheng B W, Wang Q M 2015 Chin. Phys. B 24 038502

    [11]

    Feng N N, Dong P, Zheng D, Liao S, Liang H, Shafiiha R, Feng D, Li G L, Cunningham J E, Krishnamoorthy A V, Asghari M 2010 Opt. Express 18 96

    [12]

    Tu Z, Liu K, Yi H, Zhou R, Wang X, Zhou Z, Chen Z https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8564/1/A-compact-evanescently-coupled-germanium-PIN-waveguide-photodetector/10.1117/12.2001221.short doi:10.1117/12.2001221 2012 Proc. SPIE 8564 85646

    [13]

    Chen C Z, Zheng Y Y, Huang S H, Li C, Lai H K, Chen S Y 2012 Acta Phys. Sin. 61 078104 (in Chinese)[陈城钊, 郑元宇, 黄诗浩, 李成, 赖虹凯, 陈松岩 2012 物理学报 61 078104]

    [14]

    Wang C, Li C, Lin G Y, Lu W F, Wei J B, Huang W, Lai H K, Chen S Y, Di Z F, Zhang M 2014 IEEE Trans. Electron Dev. 61 3060

    [15]

    Murakami Y, Shingyouji T 1994 J. Appl. Phys. 75 3548

    [16]

    Giovane L M, Luan H C, Agarwal A M, Kimerling L C 2001 Appl. Phys. Lett. 78 541

    [17]

    Liu Z, Cheng B, Li Y M, Li C B, Xue C L, Wang Q M 2013 Chin. Phys. B 22 116804

    [18]

    Mitsuru T, Kiyohito M, Masakazu S, Yoshiaki N, Shinichi T 2012 Opt. Express 20 8718

    [19]

    Feng N N, Liao S, Dong P, Zheng D, Liang H, Kung C C, Shafiiha R, Feng D, Li G L, Cunningham John E, Krishnamoorthy A V, Asghari M 2010 Proc. SPIE 7607 760704

    [20]

    Going R, Kim M, Wu M C 2013 Opt. Express 21 22429

  • [1] 孙堂友, 余燕丽, 覃祖彬, 陈赞辉, 陈均丽, 江玥, 张法碧. 基于TiO2纳米柱的多波段响应Cs2AgBiBr6双钙钛矿光电探测器. 物理学报, 2024, 73(7): 078502. doi: 10.7498/aps.73.20231919
    [2] 宿冉, 奚昭颖, 李山, 张嘉汉, 姜明明, 刘增, 唐为华. 基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器. 物理学报, 2024, 73(11): 118502. doi: 10.7498/aps.73.20240267
    [3] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能光电探测器. 物理学报, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [4] 赵吉玉, 谭秋红, 刘磊, 杨伟业, 王前进, 刘应开. 基于Au纳米岛修饰的CdSSe纳米带光电探测器. 物理学报, 2023, 72(9): 098103. doi: 10.7498/aps.72.20222021
    [5] 刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁. 硅纳米线阵列光电探测器研究进展. 物理学报, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [6] 庞乃琦, 王垠, 葛勇, 施斌杰, 袁寿其, 孙宏祥. 基于多端口波导结构的宽频带声触发器. 物理学报, 2023, 72(16): 164301. doi: 10.7498/aps.72.20230594
    [7] 张结印, 高飞, 张建军. 硅和锗量子计算材料研究进展. 物理学报, 2021, 70(21): 217802. doi: 10.7498/aps.70.20211492
    [8] 舒衍涛, 张有为, 王顺. 基于过渡金属硫族化合物同质结的光电探测器. 物理学报, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [9] 赵一默, 黄志伟, 彭仁苗, 徐鹏鹏, 吴强, 毛亦琛, 余春雨, 黄巍, 汪建元, 陈松岩, 李成. 超薄介质插层调制的氧化铟锡/锗肖特基光电探测器. 物理学报, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [10] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器. 物理学报, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [11] 潘祚坚, 陈志忠, 焦飞, 詹景麟, 陈毅勇, 陈怡帆, 聂靖昕, 赵彤阳, 邓楚涵, 康香宁, 李顺峰, 王琦, 张国义, 沈波. 面向显示应用的微米发光二极管外延和芯片关键技术综述. 物理学报, 2020, 69(19): 198501. doi: 10.7498/aps.69.20200742
    [12] 洪梓凡, 陈海峰, 贾一凡, 祁祺, 刘英英, 过立新, 刘祥泰, 陆芹, 李立珺, 王少青, 关云鹤, 胡启人. 引入籽晶层的物理溅射生长Ga2O3外延薄膜特性研究. 物理学报, 2020, 69(22): 228103. doi: 10.7498/aps.69.20200810
    [13] 安涛, 涂传宝, 龚伟. 具有光电倍增的宽光谱三相体异质结有机彩色探测器. 物理学报, 2018, 67(19): 198503. doi: 10.7498/aps.67.20180502
    [14] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [15] 康达, 罗斌, 闫连山, 潘炜, 邹喜华. 含间隔层的增益导引-折射率反导引平面波导激光器中高阶模式抑制研究. 物理学报, 2018, 67(10): 104204. doi: 10.7498/aps.67.20180138
    [16] 史文俊, 易迎彦, 黎敏. 锗在吸收边附近的压力-折射率系数. 物理学报, 2016, 65(16): 167801. doi: 10.7498/aps.65.167801
    [17] 汪建元, 王尘, 李成, 陈松岩. 硅基锗薄膜选区外延生长研究. 物理学报, 2015, 64(12): 128102. doi: 10.7498/aps.64.128102
    [18] 苏少坚, 张东亮, 张广泽, 薛春来, 成步文, 王启明. Ge(001)衬底上分子束外延生长高质量的Ge1-xSnx合金. 物理学报, 2013, 62(5): 058101. doi: 10.7498/aps.62.058101
    [19] 崔冬萌, 谢泉, 陈茜, 赵凤娟, 李旭珍. Si基外延Ru2Si3电子结构及光学性质研究. 物理学报, 2010, 59(3): 2027-2032. doi: 10.7498/aps.59.2027
    [20] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚. 半绝缘等离子体波导太赫兹量子级联激光器工艺研究. 物理学报, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
计量
  • 文章访问数:  7084
  • PDF下载量:  240
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-15
  • 修回日期:  2017-06-14
  • 刊出日期:  2017-10-05

/

返回文章
返回