搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含间隔层的增益导引-折射率反导引平面波导激光器中高阶模式抑制研究

康达 罗斌 闫连山 潘炜 邹喜华

引用本文:
Citation:

含间隔层的增益导引-折射率反导引平面波导激光器中高阶模式抑制研究

康达, 罗斌, 闫连山, 潘炜, 邹喜华

Supperssion of higher order modes in gain-guided index-antiguided planar waveguide laser

Kang Da, Luo Bin, Yan Lian-Shan, Pan Wei, Zou Xi-Hua
PDF
导出引用
  • 为了抑制高功率波导激光器中的高阶模式,改善其光束质量,基于增益导引-折射率反导引理论,在对称分层波导结构中添加了一层间隔层,进一步加大了高阶模式与基模之间阈值增益系数的差异,利用这种模式竞争抑制高阶模式.同时从波动方程出发,推导出各模式的本征方程,并给出了基模和高阶模的场分布.引入间隔层之后的高低阶模式损耗计算结果表明,通过合理地选择间隔层参数,可以有效地抑制高阶模式.
    In order to suppress the higher order modes and improve beam quality in high power waveguide laser, based on gainguided index-antiguided theory, a new symmetric layered waveguide structure is designed, and an interval layer is proposed to be sandwiched between waveguide layer and cladding layer in traditional symmetric GG-IAG waveguide structure. As a result, while reducing the leakage loss of fundamental mode, the threshold gain coefficient differences between fundamental mode and higher order modes will be further increased. When the gain in waveguide layer is between threshold gain coefficient of fundamental mode and that of higher order mode, the fundamental mode will have a greater advantage in mode competition than others, so higher order modes can be suppressed and the laser can obtain a single mode output. In the meantime, the guided-mode principle of this waveguide structure is explained with the theory of wave optics in this paper, the eigen equation of each mode is derived from the wave equation, and the field distributions of fundamental mode and higher order mode are also given. Additionally, in this paper we give the solution process of the threshold gain coefficient of each mode in this waveguide structure. The mode leakage losses of fundamental mode and higher order mode, after adding the interval layer, are numerically calculated, and the parameter optimization process of the interval layer is also given in this paper. In addition, the field distributions of fundamental mode and higher order mode are numerically simulated. The calculation results show that comparing with the traditional symmetric GG-IAG planar waveguide, after adding the interval layer, the loss of fundamental mode can be greatly reduced, while ensuring that the leakage loss of higher order mode reaches a maximum value by reasonably controlling the parameters of interval layer. In this way, we can suppress higher order modes and improve laser efficiency. This paper provides a new idea for improving the beam quality of high power waveguide laser with a large mode area.
      通信作者: 罗斌, bluo@home.swjtu.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号:61335005)资助的课题.
      Corresponding author: Luo Bin, bluo@home.swjtu.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 61335005).
    [1]

    Agrawal P G 2007 Applications of Nonlinear Fiber Optics (3rd Ed.) (New York:Academic Press) pp13-17

    [2]

    Ryvkin B S, Avrutin E A 2005 J. Appl. Phys. 98 2266

    [3]

    Bonner C L, Bhutta T, Shepherd D P, Tropper A C 2000 IEEE J. Quantum Electron. 36 236

    [4]

    Mackenzie J I, Li C, Shepherd D P, Meissner H E, Mitchell S C 2001 Opt. Lett. 26 698

    [5]

    Hettrick S J, Mackenzie J I, Harris R D, Wilkinson J S, Shepherd D P, Tropper A C 2000 Opt. Lett. 25 1433

    [6]

    Baker H, Lee J, Hall D 2002 Opt. Express 10 297

    [7]

    Liang W, Xu Y, Choi J M, Yariv A 2003 Opt. Lett. 28 2079

    [8]

    Kumar A, Rastogi V, Chiang K S 2006 Appl. Phys. 85 11

    [9]

    Siegman A E 2003 J. Opt. Soc. Am. A 20 1617

    [10]

    Siegman A E 2007 J. Opt. Soc. Am. B 24 1677

    [11]

    Hageman W, Chen Y, Wang X, Gao L, Kim G U, Richardson M, Bass M 2010 J. Opt. Soc. Am. B 27 2451

    [12]

    Hageman W, Chen Y, Wang X, Xiong C, Kim G U, Ballato J, Richardson M, Bass M 2012 J. Opt. Soc. Am. B 29 191

    [13]

    Liu Y, Her T H, Dittli A, Casperson L W 2013 Appl. Phys. Lett. 103 2420

    [14]

    Wang C, Her T H, Zhao L, Ao X, Casperson L W, Lai C H, Chang H C 2011 J. Lightw. Technol. 29 1958

    [15]

    Liu Y, Her T H, Lee C 2015 Opt. Soc. Am. 107 1

    [16]

    Liu Y, Her T H, Wang C, Casperson L W 2016 AIP Adv. 6 125206

    [17]

    Yariv A (translated by Chen H M) 2004 Optical Electronics in Modern Communications (5th Ed.) (Beijing:House of Electronics Industry Press) pp372-377 (in Chinese)[安农亚里夫 著(陈鹤鸣 译) 2004 现代通信光电子学 (第五版) (北京:电子工业出版社) 第372377页]

    [18]

    Siegman A E, Chen Y, Sudesh V, Richardson M C, Bass M 2006 Appl. Phys. Lett. 89 251101

    [19]

    Dittli A, Her T H 2013 SPIE 8600 21

    [20]

    Kasap S O 2003 Optoelectronics and Photon Principles and Practices (2nd Ed.) (Beijing:House of Electronics Industry Press) pp14-36

  • [1]

    Agrawal P G 2007 Applications of Nonlinear Fiber Optics (3rd Ed.) (New York:Academic Press) pp13-17

    [2]

    Ryvkin B S, Avrutin E A 2005 J. Appl. Phys. 98 2266

    [3]

    Bonner C L, Bhutta T, Shepherd D P, Tropper A C 2000 IEEE J. Quantum Electron. 36 236

    [4]

    Mackenzie J I, Li C, Shepherd D P, Meissner H E, Mitchell S C 2001 Opt. Lett. 26 698

    [5]

    Hettrick S J, Mackenzie J I, Harris R D, Wilkinson J S, Shepherd D P, Tropper A C 2000 Opt. Lett. 25 1433

    [6]

    Baker H, Lee J, Hall D 2002 Opt. Express 10 297

    [7]

    Liang W, Xu Y, Choi J M, Yariv A 2003 Opt. Lett. 28 2079

    [8]

    Kumar A, Rastogi V, Chiang K S 2006 Appl. Phys. 85 11

    [9]

    Siegman A E 2003 J. Opt. Soc. Am. A 20 1617

    [10]

    Siegman A E 2007 J. Opt. Soc. Am. B 24 1677

    [11]

    Hageman W, Chen Y, Wang X, Gao L, Kim G U, Richardson M, Bass M 2010 J. Opt. Soc. Am. B 27 2451

    [12]

    Hageman W, Chen Y, Wang X, Xiong C, Kim G U, Ballato J, Richardson M, Bass M 2012 J. Opt. Soc. Am. B 29 191

    [13]

    Liu Y, Her T H, Dittli A, Casperson L W 2013 Appl. Phys. Lett. 103 2420

    [14]

    Wang C, Her T H, Zhao L, Ao X, Casperson L W, Lai C H, Chang H C 2011 J. Lightw. Technol. 29 1958

    [15]

    Liu Y, Her T H, Lee C 2015 Opt. Soc. Am. 107 1

    [16]

    Liu Y, Her T H, Wang C, Casperson L W 2016 AIP Adv. 6 125206

    [17]

    Yariv A (translated by Chen H M) 2004 Optical Electronics in Modern Communications (5th Ed.) (Beijing:House of Electronics Industry Press) pp372-377 (in Chinese)[安农亚里夫 著(陈鹤鸣 译) 2004 现代通信光电子学 (第五版) (北京:电子工业出版社) 第372377页]

    [18]

    Siegman A E, Chen Y, Sudesh V, Richardson M C, Bass M 2006 Appl. Phys. Lett. 89 251101

    [19]

    Dittli A, Her T H 2013 SPIE 8600 21

    [20]

    Kasap S O 2003 Optoelectronics and Photon Principles and Practices (2nd Ed.) (Beijing:House of Electronics Industry Press) pp14-36

  • [1] 庞乃琦, 王垠, 葛勇, 施斌杰, 袁寿其, 孙宏祥. 基于多端口波导结构的宽频带声触发器. 物理学报, 2023, 72(16): 164301. doi: 10.7498/aps.72.20230594
    [2] 史书姝, 肖姗, 许秀来. 不同抗磁行为量子点发光在波导中的手性传输. 物理学报, 2022, 71(6): 067801. doi: 10.7498/aps.71.20211858
    [3] 李慧慧, 薛文瑞, 李宁, 杜易达, 李昌勇. 涂覆石墨烯的嵌套偏心空心圆柱的椭圆形电介质波导的模式特性. 物理学报, 2022, 71(10): 108101. doi: 10.7498/aps.71.20212321
    [4] 董慧莹, 秦晓茹, 薛文瑞, 程鑫, 李宁, 李昌勇. 涂覆石墨烯的非对称椭圆电介质纳米并行线的模式分析. 物理学报, 2020, 69(23): 238102. doi: 10.7498/aps.69.20201041
    [5] 陈云天, 王经纬, 陈伟锦, 徐竞. 互易波导模式耦合理论. 物理学报, 2020, 69(15): 154206. doi: 10.7498/aps.69.20200194
    [6] 程鑫, 薛文瑞, 卫壮志, 董慧莹, 李昌勇. 涂覆石墨烯的椭圆形电介质纳米线光波导的模式特性分析. 物理学报, 2019, 68(5): 058101. doi: 10.7498/aps.68.20182090
    [7] 卫壮志, 薛文瑞, 彭艳玲, 程鑫, 李昌勇. 基于涂覆石墨烯的三根电介质纳米线的THz波导的模式特性分析. 物理学报, 2018, 67(10): 108101. doi: 10.7498/aps.67.20180036
    [8] 彭艳玲, 薛文瑞, 卫壮志, 李昌勇. 涂覆石墨烯的非对称并行电介质纳米线波导的模式特性分析. 物理学报, 2018, 67(3): 038102. doi: 10.7498/aps.67.20172016
    [9] 王尘, 许怡红, 李成, 林海军. 高性能SOI基GePIN波导光电探测器的制备及特性研究. 物理学报, 2017, 66(19): 198502. doi: 10.7498/aps.66.198502
    [10] 张会云, 刘蒙, 张玉萍, 申端龙, 吴志心, 尹贻恒, 李德华. 连续波抽运气体波导产生太赫兹激光的理论研究. 物理学报, 2014, 63(2): 020702. doi: 10.7498/aps.63.020702
    [11] 曹永军, 江鑫. 二维磁振子晶体中线缺陷模的性质及其应用. 物理学报, 2013, 62(8): 087501. doi: 10.7498/aps.62.087501
    [12] 乔海亮, 王玥, 陈再高, 张殿辉. 全矢量有限差分法分析任意截面波导模式. 物理学报, 2013, 62(7): 070204. doi: 10.7498/aps.62.070204
    [13] 陈园园, 邹仁华, 宋钢, 张恺, 于丽, 赵玉芳, 肖井华. 纳米银线波导中表面等离极化波激发和辐射的偏振特性研究. 物理学报, 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [14] 曹永军, 谭伟, 刘燕. 二维磁振子晶体中点缺陷模的耦合性质研究. 物理学报, 2012, 61(11): 117501. doi: 10.7498/aps.61.117501
    [15] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚. 半绝缘等离子体波导太赫兹量子级联激光器工艺研究. 物理学报, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [16] 盛峥, 黄思训. 雷达回波资料反演海洋波导的算法和抗噪能力研究. 物理学报, 2009, 58(6): 4328-4334. doi: 10.7498/aps.58.4328
    [17] 盛峥, 黄思训, 曾国栋. 利用Bayesian-MCMC方法从雷达回波反演海洋波导. 物理学报, 2009, 58(6): 4335-4341. doi: 10.7498/aps.58.4335
    [18] 李体俊. 坐标算符本征矢的表示与不对称投影算符的积分. 物理学报, 2008, 57(7): 3969-3972. doi: 10.7498/aps.57.3969
    [19] 张绘蓝, 张光勇, 王 程, 刘时雄, 刘劲松. 全息明孤子的波导特性. 物理学报, 2007, 56(1): 236-239. doi: 10.7498/aps.56.236
    [20] 殷海荣, 宫玉彬, 魏彦玉, 路志刚, 巩华荣, 岳玲娜, 黄民智, 王文祥. 非截面二维光子晶体排列矩形波导的全模式分析. 物理学报, 2007, 56(3): 1590-1597. doi: 10.7498/aps.56.1590
计量
  • 文章访问数:  6493
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-19
  • 修回日期:  2018-03-14
  • 刊出日期:  2019-05-20

/

返回文章
返回