搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型双通道差分偏振干涉成像系统

王田 牛明生 步苗苗 韩培高 郝殿中 杨敬顺 宋连科

引用本文:
Citation:

新型双通道差分偏振干涉成像系统

王田, 牛明生, 步苗苗, 韩培高, 郝殿中, 杨敬顺, 宋连科

Novel dual channel polarization interference imaging system

Wang Tian, Niu Ming-Sheng, Bu Miao-Miao, Han Pei-Gao, Hao Dian-Zhong, Yang Jing-Shun, Song Lian-Ke
PDF
导出引用
  • 针对Wollaston棱镜和Savart偏光镜(SP)组合的差分成像光谱系统存在光线溢出和无法改变系统光程等问题,设计了一种新型双通道差分偏振干涉成像系统.此系统不仅可获取正交偏振图像,还可以通过调整Savart偏光镜的厚度来改变系统光程.介绍了该系统的结构、理论原理,并利用琼斯矩阵推导出四束偏振光线的复振幅及其相干光干涉强度表达式.分析了宽视场Savart偏光镜(WSP)和可调光程的Savart偏光镜(MSP)的分束特性,得出WSP相较于SP具有更好的剪切能力和WSP可优化系统光路的结论.获得了不同楔形结构角下MSP的光程差、横向剪切量随楔形移动量的变化曲线.通过实验验证,获取了不同剪切量下的干涉图像和复色光下平行、垂直分量的空间图像,进而获得了总的强度图像和差分强度图像.得出差分强度图像相较于偏振强度图像具有较高对比度的结论.研究结果对双通道成像光谱系统的性能优化具有一定的参考意义.
    The interference images with fixed spectral resolution can be obtained by using the existing static polarization-difference imaging system because the optical path of the system cannot be changed flexibly. However, for different detection targets, the spectral resolution of the system determined by the optical path difference must be appropriate. To satisfy a variety of application requirements, a novel dual channel polarization-difference interference imaging system (DPDⅡS), based on the lateral shear of the wide-field-of-view Savart polariscope (WSP) and the modulated Savart polariscope (MSP), is presented. The two-dimensional space images of a target and orthogonal interference images can be obtained by adjusting the MSP under different lateral displacements simultaneously. In addition, the remarkable characteristics of the system avoid spilling over rays and optimizing the system optical path effectively. In this paper, by using the Jones matrix, the system structure is demonstrated and the theoretical principle of DPDⅡS is analyzed in detail. The amplitudes of the four beams from the MSP and the interference intensity expressions of the coherent light are derived. Then the splitting characteristics of the Savart polariscope (SP) and WSP are presented. It is concluded that the WSP has better shear ability than SP and the WSP can optimize the optical path effectively compared with Wollaston prism in the DPDⅡS. The change ranges of the optical path difference and lateral displacement produced by the MSP for structure angles =/3, /4, /6 are analyzed in detail. The reconstructed orthogonal interferograms and the experimental interferograms under 632.8 nm monochromatic light for dMSP=1.00, 1.10, 1.20, 1.30 mm are obtained. A comparison between the experimental interference images and the simulated images proves that the interference fringes with different resolutions can be obtained simultaneously by adjusting the MSP. Meanwhile, the light intensities of the double optical paths are approximately equal and the same optical path difference is generated for the dual channel with the movement of MSP. The experimental results are consistent with the theoretical analyses. The spatial images of parallel and vertical components are detected under 632.8 nm polychromatic light. Then the total intensity image and the polarization-difference image are obtained through data processing. The conclusion that the polarization difference intensity image has a high resolution compared with the polarization intensity image is presented. The study has reference significance and practical value for the dual channel polarization interference imaging system.
      通信作者: 牛明生, nmsheng@163.com
    • 基金项目: 山东省重点研发计划(批准号:2017GSF17125)和曲阜师范大学引进人才科研启动项目(批准号:20130760)资助的课题.
      Corresponding author: Niu Ming-Sheng, nmsheng@163.com
    • Funds: Project supported by the Key Research and Development Plan of Shandong Province, China (Grant No. 2017GSF17125) and the Qufu Normal University Introduces Talent Research Start-up Project, China (Grant No. 20130760).
    [1]

    Meng X, Li J, Liu D, Zhu R H 2013 Opt. Lett. 38 778

    [2]

    Meng X, Li J X, Xu T T, Liu D F, Zhu R H 2013 Opt. Express 21 32071

    [3]

    Zhang C M, Xiang L B, Zhao B C, Yuan X 2002 Opt. Commun. 23 21

    [4]

    Zhang C M, Yan X, Zhao B C 2008 Opt. Commun. 281 2050

    [5]

    Zhao B C, Yang J F, Chang L Y 2009 Acta Photon. Sin. 38 497 (in Chinese)[赵葆常, 杨建峰, 常凌颖 2009 光子学报 38 497]

    [6]

    Wu H Y 2011 Opt. Eng. 50 066201

    [7]

    Xiang L B, Wang Z H, Liu X B 2009 Remote Sens. Technol. Appl. 24 257 (in Chinese)[相里斌, 王忠厚, 刘学斌 2009 遥感技术与应用 24 257]

    [8]

    Zeng N, Jiang X Y, Gao Q, He Y H, Ma H 2009 Appl. Opt. 48 6734

    [9]

    Zhang C M, Li W Q, Yan T Y, Mu T K, Wei Y T 2016 Opt. Express. 24 23314

    [10]

    Zhang C M, Zhao B C, Xiang L B 2004 Appl. Opt. 43 6090

    [11]

    Quan N C, Zhang C M, Mu T K 2016 Acta Phys. Sin. 65 080703 (in Chinese)[权乃承, 张淳民, 穆廷魁 2016 物理学报 65 080703]

    [12]

    Yu H, Zhang R, Li K W, Xue R, Wang Z B 2017 Acta Phys. Sin. 66 054201 (in Chinese)[于慧, 张瑞, 李克武, 薛瑞, 王志斌 2017 物理学报 66 054201]

    [13]

    Mu T K, Zhang C M, Ren W Q, Jia C L 2012 Opt. Lett. 37 3507

    [14]

    Dai H S, Ren W W, Zhang C M, Mu T K, Gao H W C N 102297722A[2011-12-28]

    [15]

    Mu T K, Zhang C M, Li Q W 2014 Acta Phys. Sin. 63 110705 (in Chinese)[穆廷魁, 张淳民, 李祺伟 2014 物理学报 63 110705]

    [16]

    Zhu Y C, Shi J H, Yang Y, Zeng G H 2015 Appl. Opt. 54 1279

    [17]

    Arnaud B, Mehdi A, Francois G, Dolfi D 2009 Appl. Opt. 48 5764

    [18]

    Wang T, Niu M S, Bu M M, Han P G, Hao D Z, Ma L L, Song L K 2017 Acta Opt. Sin. 37 107 (in Chinese)[王田, 牛明生, 步苗苗, 韩培高, 郝殿中, 马丽丽, 宋连科 2017 光学学报 37 107]

    [19]

    Mu T K, Zhang C M, Zhao B C 2009 Appl. Opt. 48 2333

    [20]

    Mu T K, Zhang C M, Zhao B C 2009 Opt. Commun. 282 1984

  • [1]

    Meng X, Li J, Liu D, Zhu R H 2013 Opt. Lett. 38 778

    [2]

    Meng X, Li J X, Xu T T, Liu D F, Zhu R H 2013 Opt. Express 21 32071

    [3]

    Zhang C M, Xiang L B, Zhao B C, Yuan X 2002 Opt. Commun. 23 21

    [4]

    Zhang C M, Yan X, Zhao B C 2008 Opt. Commun. 281 2050

    [5]

    Zhao B C, Yang J F, Chang L Y 2009 Acta Photon. Sin. 38 497 (in Chinese)[赵葆常, 杨建峰, 常凌颖 2009 光子学报 38 497]

    [6]

    Wu H Y 2011 Opt. Eng. 50 066201

    [7]

    Xiang L B, Wang Z H, Liu X B 2009 Remote Sens. Technol. Appl. 24 257 (in Chinese)[相里斌, 王忠厚, 刘学斌 2009 遥感技术与应用 24 257]

    [8]

    Zeng N, Jiang X Y, Gao Q, He Y H, Ma H 2009 Appl. Opt. 48 6734

    [9]

    Zhang C M, Li W Q, Yan T Y, Mu T K, Wei Y T 2016 Opt. Express. 24 23314

    [10]

    Zhang C M, Zhao B C, Xiang L B 2004 Appl. Opt. 43 6090

    [11]

    Quan N C, Zhang C M, Mu T K 2016 Acta Phys. Sin. 65 080703 (in Chinese)[权乃承, 张淳民, 穆廷魁 2016 物理学报 65 080703]

    [12]

    Yu H, Zhang R, Li K W, Xue R, Wang Z B 2017 Acta Phys. Sin. 66 054201 (in Chinese)[于慧, 张瑞, 李克武, 薛瑞, 王志斌 2017 物理学报 66 054201]

    [13]

    Mu T K, Zhang C M, Ren W Q, Jia C L 2012 Opt. Lett. 37 3507

    [14]

    Dai H S, Ren W W, Zhang C M, Mu T K, Gao H W C N 102297722A[2011-12-28]

    [15]

    Mu T K, Zhang C M, Li Q W 2014 Acta Phys. Sin. 63 110705 (in Chinese)[穆廷魁, 张淳民, 李祺伟 2014 物理学报 63 110705]

    [16]

    Zhu Y C, Shi J H, Yang Y, Zeng G H 2015 Appl. Opt. 54 1279

    [17]

    Arnaud B, Mehdi A, Francois G, Dolfi D 2009 Appl. Opt. 48 5764

    [18]

    Wang T, Niu M S, Bu M M, Han P G, Hao D Z, Ma L L, Song L K 2017 Acta Opt. Sin. 37 107 (in Chinese)[王田, 牛明生, 步苗苗, 韩培高, 郝殿中, 马丽丽, 宋连科 2017 光学学报 37 107]

    [19]

    Mu T K, Zhang C M, Zhao B C 2009 Appl. Opt. 48 2333

    [20]

    Mu T K, Zhang C M, Zhao B C 2009 Opt. Commun. 282 1984

  • [1] 张涛, 侯宏, 鲍明. 基于稀疏重构的尾波干涉成像方法. 物理学报, 2019, 68(19): 199101. doi: 10.7498/aps.68.20190831
    [2] 殷玉龙, 孙晓兵, 宋茂新, 陈卫, 陈斐楠. 分振幅型全Stokes同时偏振成像系统波片相位延迟误差分析. 物理学报, 2019, 68(2): 024203. doi: 10.7498/aps.68.20181553
    [3] 才啟胜, 黄旻, 韩炜, 刘怡轩, 路向宁. 大孔径空间外差干涉光谱成像技术多谱段成像仿真. 物理学报, 2018, 67(23): 234205. doi: 10.7498/aps.67.20180943
    [4] 才啟胜, 黄旻, 韩炜, 丛麟骁, 路向宁. 外差式偏振干涉成像光谱技术研究. 物理学报, 2017, 66(16): 160702. doi: 10.7498/aps.66.160702
    [5] 李建欣, 柏财勋, 刘勤, 沈燕, 徐文辉, 许逸轩. 新型干涉高光谱成像系统的光束剪切特性分析. 物理学报, 2017, 66(19): 190704. doi: 10.7498/aps.66.190704
    [6] 潘安, 王东, 史祎诗, 姚保利, 马臻, 韩洋. 多波长同时照明的菲涅耳域非相干叠层衍射成像. 物理学报, 2016, 65(12): 124201. doi: 10.7498/aps.65.124201
    [7] 李祺伟, 张淳民, 魏宇童, 陈清颖. 偏振型干涉成像光谱仪中Savart偏光镜通光孔径的研究. 物理学报, 2015, 64(22): 224206. doi: 10.7498/aps.64.224206
    [8] 谭林秋, 华灯鑫, 汪丽, 高飞, 狄慧鸽. Mach-Zehnder干涉仪条纹成像多普勒激光雷达风速反演及视场展宽技术. 物理学报, 2014, 63(22): 224205. doi: 10.7498/aps.63.224205
    [9] 周彦平, 黎发军, 车驰, 谭立英, 冉启文, 于思源, 马晶. 量子点红外探测器在空间光电系统中的应用. 物理学报, 2014, 63(14): 148501. doi: 10.7498/aps.63.148501
    [10] 祝宝辉, 张淳民, 简小华, 曾文锋. 时空混合调制型偏振干涉成像光谱仪的全视场偏振信息探测研究. 物理学报, 2012, 61(9): 090701. doi: 10.7498/aps.61.090701
    [11] 代海山, 张淳民, 穆廷魁. 宽场、消色差、温度补偿风成像干涉仪中次级条纹研究 . 物理学报, 2012, 61(22): 224201. doi: 10.7498/aps.61.224201
    [12] 李哲, 江海河, 王礼, 杨经纬, 吴先友. 2 m Cr,Tm,Ho:YAG激光热退偏效应的数值模拟及实验研究. 物理学报, 2012, 61(4): 044205. doi: 10.7498/aps.61.044205
    [13] 穆廷魁, 张淳民, 任文艺, 张霖, 祝宝辉. 偏振干涉成像光谱仪的视场展宽设计与分析. 物理学报, 2011, 60(7): 070704. doi: 10.7498/aps.60.070704
    [14] 张淳民, 刘宁, 吴福全. 偏振干涉成像光谱仪中格兰-泰勒棱镜全视场角透过率的分析与计算. 物理学报, 2010, 59(2): 949-957. doi: 10.7498/aps.59.949
    [15] 步志超, 张淳民, 赵葆常, 朱化春. 大视场消色差温度补偿型风成像干涉仪调制度的分析与计算. 物理学报, 2009, 58(4): 2415-2422. doi: 10.7498/aps.58.2415
    [16] 杜 娟, 张淳民, 赵葆常, 孙 尧. 稳态大视场偏振干涉成像光谱仪中视场补偿型Savart偏光镜透射率研究. 物理学报, 2008, 57(10): 6311-6318. doi: 10.7498/aps.57.6311
    [17] 袁志林, 张淳民, 赵葆常. 新型偏振干涉成像光谱仪信噪比研究. 物理学报, 2007, 56(11): 6413-6419. doi: 10.7498/aps.56.6413
    [18] 郭汉明, 陈家璧, 庄松林. 相干点源照明时消球差光学系统的像场结构. 物理学报, 2007, 56(2): 811-818. doi: 10.7498/aps.56.811
    [19] 陈湛旭, 唐志列, 万 巍, 何永恒. 基于声透镜成像系统的光声层析成像. 物理学报, 2006, 55(8): 4365-4370. doi: 10.7498/aps.55.4365
    [20] 彭志红, 张淳民, 赵葆常, 李英才, 吴福全. 新型偏振干涉成像光谱仪中Savart偏光镜透射率的研究. 物理学报, 2006, 55(12): 6374-6381. doi: 10.7498/aps.55.6374
计量
  • 文章访问数:  2974
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-29
  • 修回日期:  2018-03-12
  • 刊出日期:  2019-05-20

新型双通道差分偏振干涉成像系统

  • 1. 曲阜师范大学激光研究所, 山东省激光偏光与信息技术重点实验室, 曲阜 273165
  • 通信作者: 牛明生, nmsheng@163.com
    基金项目: 山东省重点研发计划(批准号:2017GSF17125)和曲阜师范大学引进人才科研启动项目(批准号:20130760)资助的课题.

摘要: 针对Wollaston棱镜和Savart偏光镜(SP)组合的差分成像光谱系统存在光线溢出和无法改变系统光程等问题,设计了一种新型双通道差分偏振干涉成像系统.此系统不仅可获取正交偏振图像,还可以通过调整Savart偏光镜的厚度来改变系统光程.介绍了该系统的结构、理论原理,并利用琼斯矩阵推导出四束偏振光线的复振幅及其相干光干涉强度表达式.分析了宽视场Savart偏光镜(WSP)和可调光程的Savart偏光镜(MSP)的分束特性,得出WSP相较于SP具有更好的剪切能力和WSP可优化系统光路的结论.获得了不同楔形结构角下MSP的光程差、横向剪切量随楔形移动量的变化曲线.通过实验验证,获取了不同剪切量下的干涉图像和复色光下平行、垂直分量的空间图像,进而获得了总的强度图像和差分强度图像.得出差分强度图像相较于偏振强度图像具有较高对比度的结论.研究结果对双通道成像光谱系统的性能优化具有一定的参考意义.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回