搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分振幅型全Stokes同时偏振成像系统波片相位延迟误差分析

殷玉龙 孙晓兵 宋茂新 陈卫 陈斐楠

引用本文:
Citation:

分振幅型全Stokes同时偏振成像系统波片相位延迟误差分析

殷玉龙, 孙晓兵, 宋茂新, 陈卫, 陈斐楠

Phase delay error analysis of wave plate of division-of-amplitude full Stokes simultaneous polarization imaging system

Yin Yu-Long, Sun Xiao-Bing, Song Mao-Xin, Chen Wei, Chen Fei-Nan
PDF
HTML
导出引用
  • 分振幅型全Stokes同时偏振成像仪具有实时性好、空间分辨率高、精度高等优点, 有很高的应用价值. 分振幅型全Stokes同时偏振成像系统利用偏振分束器、1/2波片和1/4波片将入射光Stokes矢量调制在4幅图像中, 可解析入射光Stokes矢量. 1/2波片和1/4波片的相位延迟误差对Stokes矢量测量精度有着不可忽略的影响. 建立了包含上述两种误差的Stokes矢量测量误差方程, 分析了1/2波片和1/4波片相位延迟耦合误差对自然光、0°/45°线偏光、左旋圆偏光等典型基态入射光的Stokes矢量测量误差的影响, 推导了任意偏振态的Stokes矢量测量误差的表征方法. 在邦加球球面和球内选取不同偏振度的Stokes矢量作为入射光进行仿真. 结果表明, Stokes矢量测量误差和偏振度测量误差均随着入射光偏振度的增大而增大. 选取入射光偏振度为1时的偏振测量精度评估系统. 为满足2%的偏振测量精度, 1/2波片相位延迟误差应在±1.6°内, 1/4波片相位延迟误差应在±0.5°内. 这对提高系统的偏振测量精度具有重要意义, 为系统设计和研制提供了重要的理论指导.
    The division-of-amplitude full Stokes simultaneous polarization imaging system has prominent merits, such as real time, high spatial resolution, high precision, etc. The development of the division-of-amplitude full Stokes simultaneous polarization imaging system has a high application value. The division-of-amplitude full Stokes simultaneous polarization imaging system uses polarization beam splitters, a half wave plate (HWP) and a quarter wave plate (QWP) to modulate the incident Stokes vector into four intensity images. Using the four intensity images, the incident Stokes vector can be analyzed. In the system, the phase delay errors of the HWP and the QWP have a direct influence on the measurement accuracy of the incident Stokes vector. A Stokes vector measurement error equation containing the phase delay errors of the HWP and the QWP is established. When there are the phase delay errors of the HWP and the QWP in the system, the Stokes vector measurement errors of the unpolarized light, 0° liner polarized light, 90° liner polarized light, 45° liner polarized light, 135° liner polarized light, right circularly polarized light and left circularly polarized light are analyzed. A method of solving the Stokes vector measurement error of incident light with any polarization state is given. When the Stokes vectors with different degrees of polarization (DOPs) are used as the incident light, the simulation results show that both the Stokes vector measurement error and the DOP measurement error increase with the DOP of incident light increasing. Therefore, we select the polarization measurement accuracy to evaluate the system when the DOP of incident light equals 1. To ensure that the polarization measurement accuracy of the system is within 2%, the phase delay error of the HWP should be within ±1.6° and the phase delay error of the QWP should be within ±0.5°. The analysis results of the phase delay errors of the HWP and the QWP are of great significance for improving the polarization measurement accuracy of the division-of-amplitude full Stokes simultaneous polarization imaging system, and also provide important theoretical guidance in designing and developing the system.
      通信作者: 殷玉龙, yinyulong_yyl@163.com ; 孙晓兵, xbsun@aiofm.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFE0201400)、卫星应用共性关键技术项目(批准号: 30-Y20A010-9007-17/18)、高分重大专项项目(批准号: GFZX04011805)和中国科学院合肥研究院重点项目(批准号: Y73H9P1801)资助的课题.
      Corresponding author: Yin Yu-Long, yinyulong_yyl@163.com ; Sun Xiao-Bing, xbsun@aiofm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFE0201400), the Common Key Technology Project for Satellite Application of China (Grant No. 30-Y20A010-9007-17/18), the National High Resolution Major Special Project of China (Grant No. GFZX04011805), and the Key Project of Hefei Research Institute of Chinese Academy of Sciences (Grant No. Y73H9P1801).
    [1]

    Zhao H J, Xu W J 2016 Sensors 16 1223Google Scholar

    [2]

    韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 物理学报 67 054202

    Han P L, Liu F, Zhang G, Tao Y, Shao X P 2018 Acta Phys. Sin. 67 054202

    [3]

    Teimuraz K, Giorgi K, Barbara K, Giorge K, Vazha K, Eldar K, Otar K, David K 2017 A & A 2 20

    [4]

    钱鸿鹄, 孟炳寰, 袁银麟, 洪津, 张苗苗, 李双, 裘桢炜 2017 物理学报 66 100701Google Scholar

    Qian H H, Meng B H, Yuan Y L, Hong J, Zhang M M, Li S, Qiu Z W 2017 Acta Phys. Sin. 66 100701Google Scholar

    [5]

    Huang X, Bai J, Wang K, Liu Q, Luo Y, Yang K, Zhang X 2017 Opt. Express 25 001173Google Scholar

    [6]

    Jacques S L, Roussel S, Samatham R 2016 J. Biomed. Opt. 21 071115Google Scholar

    [7]

    Azzam R M A 1982 Opt. Acta 29 685Google Scholar

    [8]

    Pezzaniti J L, Chenault D, Roche M, Reinhardt J, Pezzaniti J P, Schultz H 2008 Proc. SPIE 6972 69720JGoogle Scholar

    [9]

    Oka K, Kaneko T 2003 Opt. Express 11 1510Google Scholar

    [10]

    Luo H T, Oka K, DeHoog E, Kudenov M, Schiewgerling J, Dereniak E L 2008 Appl. Opt. 47 4413Google Scholar

    [11]

    Cao Q Z, Zhang C M, DeHoog E 2012 Appl. Opt. 51 5791Google Scholar

    [12]

    Saito N, Odate S, Otaki K, Kubota M, Kitahara R, Oka K 2013 Proc. SPIE 8873 88730M−1Google Scholar

    [13]

    权乃承, 张淳民, 穆廷魁 2016 物理学报 65 080703

    Quan N C, Zhang C M, Mu T K 2016 Acta Phys. Sin. 65 080703

    [14]

    Feng B, Shi Z L, Liu H Z, Liu L, Zhao Y H, Zhang J C 2018 J. Optics-UK 20 065703Google Scholar

    [15]

    李翠丽, 孙晓兵, 王涵, 韦玮, 舒存铭 2014 光学学报 34 0412004

    Li C L, Sun X B, Wang H, Wei W, Shu C M 2014 Acta Optica Sinica 34 0412004

    [16]

    Liu Z, Yang W F, Ye Q H, Hong J, Gong G Y, Zheng X B 2016 Appl. Optics 55 1934Google Scholar

    [17]

    李浩, 朱京平, 张宁, 张云尧, 强帆, 宗康 2016 物理学报 65 134202Google Scholar

    Li H, Zhu J P, Zhang N, Zhang Y Y, Qiang F, Zong K 2016 Acta Phys. Sin. 65 134202Google Scholar

    [18]

    Mu T K, Zhang C M, Li Q W, Liang R G 2015 Opt. Express 23 10822Google Scholar

    [19]

    Alenin A S, Vaughn I J, Tyo J S 2018 Appl. Optics 57 2327Google Scholar

    [20]

    黎高平, 王雷, 谢毅 2009 宇航计测技术 29 55Google Scholar

    Li G P, Wang L, Xie Y 2009 Journal of Astronautic Metrology and Measurement 29 55Google Scholar

    [21]

    廖延彪 2003 偏振光学 (北京: 科学出版社)第45−63页

    Liao Y B 2003 Polarization Optics (Beijing: Science Press) pp45−63 (in Chinese)

  • 图 1  分振幅型全Stokes同时偏振成像系统原理图

    Fig. 1.  Scheme of the division-of-amplitude full Stokes simultaneous polarization imaging system.

    图 2  不同入射光情况下的Stokes参数测量误差 (a) 自然光; (b) 0° 线偏光; (c) 90° 线偏光; (d) 45° 线偏光; (e) 135° 线偏光; (f) 右旋圆偏光; (g) 左旋圆偏光

    Fig. 2.  Errors of Stokes parameters of different incident light: (a) Unpolarized light; (b) 0° liner polarized light; (c) 90° liner polarized light; (d) 45° liner polarized light; (e) 135° liner polarized light; (f) right circularly polarized light; (g) left circularly polarized light.

    图 3  邦加球球面上选取1000个不同偏振态的Stokes矢量的 (a) 三维分布和(b) Stokes参数的数值分布

    Fig. 3.  (a) 3D distribution and (b) stokes parameters values of 1000 Stokes vectors different degrees of polarization selected on the Poincaré sphere.

    图 4  1000个邦加球球面上的入射光采样点的Stokes参数测量误差 (a) 仅存在1°的 HWP相位延迟误差; (b) 仅存在1°的QWP相位延迟误差

    Fig. 4.  The measurement errors of Stokes parameters of 1000 incident light sampling points selected on the Poincaré sphere is simulated: (a) There is only 1° phase delay error of HWP; (b) there is only 1° phase delay error of QWP in the system.

    图 5  不同偏振度的采样点作为入射光时对偏振测量精度的影响 (a) 仅HWP相位延迟误差; (b) 仅QWP相位延迟误差; (c) HWP和QWP相位延迟耦合误差

    Fig. 5.  When the sampling points with different degrees of polarization are used as incident light, the effect of measurement accuracy: (a) The phase delay error of the HWP; (b) the phase delay error of the QWP; (c) the phase delay errors of the HWP and the QWP on polarization.

    图 6  1000个邦加球球面上的入射光采样点的偏振度测量误差 (a) 仅存在1°的HWP相位延迟误差; (b) 仅存在1°的QWP相位延迟误差

    Fig. 6.  The measurement errors of DOP of 1000 incident light sampling points selected on the Poincaré sphere is simulated: (a) There is only 1° phase delay error of HWP; (b) there is only 1° phase delay error of QWP in the system.

    图 7  入射光的偏振度$P$分别为1.0, 0.8, 0.5, 0.2和0.1时, 偏振度测量精度${\rm{acc}}\_P (\sigma ,\delta ,P)$随HWP相位延迟误差$\sigma $和QWP相位延迟误差$\delta $的变化关系

    Fig. 7.  Variation relation of measure accuracy ${\rm{acc}}\_P (\sigma ,\delta ,P)$ of DOP with the phase delay error of HWP and the phase delay error of QWP under the condition of $P$ = 1.0, 0.8, 0.5, 0.2 and 0.1.

    图 8  波片相位延迟误差分析实验光路

    Fig. 8.  Experimental optical path of wave plate phase delay error analysis.

    图 9  实验中HWP相位延迟误差$\sigma$ = −0.26°和QWP相位延迟误差$\delta $ = −0.13°时的测量结果 入射光 (a) ${{{S}}_0}$分量; (b) ${{{S}}_1}$分量; (c) ${{{S}}_2}$分量; (d) ${{{S}}_3}$分量; (e) 偏振度

    Fig. 9.  Measurement results: (a) ${{{S}}_0}$ component; (b) ${{{S}}_1}$ component; (c) ${{{S}}_2}$ component; (d) ${{{S}}_3}$ component; (e) DOP of the incident light under the condition of $\sigma $ = −0.26° and $\delta$ = −0.13°.

    表 1  分振幅型全Stokes同时偏振成像系统设计参数

    Table 1.  Parameters of division-of-amplitude full Stokes simultaneous polarization imaging system.

    参数名称参数值
    1/2波片相位延迟量
    (Retardance of HWP)
    180°
    1/4波片相位延迟量
    (Retardance of QWP)
    90°
    1/2波片快轴方位角
    (Fast axis orientation of HWP)
    −22.5°
    1/4波片快轴方位角
    (Fast axis orientation of QWP)
    45°
    部分偏振分束器分束比
    (Splitting ratio of PPBS)
    Tp/Ts = 0.8/0.2
    下载: 导出CSV

    表 2  系统偏振度测量精度${\rm{acc}}\_P(\sigma ,\delta ,P {\rm{ = }} 1)$随HWP相位延迟误差$\sigma $和QWP相位延迟误差$\delta $的变化关系

    Table 2.  Variation relation of measure accuracy ${\rm{acc}}\_P(\sigma ,\delta ,P {\rm{ = }} 1)$ of DOP with the phase delay error $\sigma $ of HWP and the phase delay error $\delta $ of QWP.

    $\sigma $$\delta$
    −1.0°−0.9°−0.6°−0.5°0.5°0.6°0.9°1.0°
    −3.2°3.22%3.07%2.65%2.53%2.03%2.54%2.68%3.11%3.26%
    −3.1°3.17%3.02%2.59%2.47%1.97%2.48%2.62%3.05%3.20%
    −1.7°2.50%2.32%1.82%1.66%1.06%1.67%1.83%2.33%2.50%
    −1.6°2.46%2.28%1.77%1.61%1.00%1.62%1.78%2.28%2.46%
    −0.5°2.13%1.92%1.31%1.12%0.31%1.12%1.31%1.92%2.13%
    2.09%1.88%1.25%1.04%01.04%1.25%1.88%2.09%
    0.5°2.13%1.92%1.32%1.12%0.31%1.12%1.32%1.92%2.13%
    1.6°2.45%2.27%1.77%1.62%1.00%1.61%1.77%2.27%2.45%
    1.7°2.49%2.31%1.82%1.67%1.06%1.66%1.82%2.31%2.49%
    3.1°3.20%3.05%2.64%2.50%1.95%2.46%2.59%3.02%3.17%
    3.2°3.25%3.11%2.70%2.57%2.02%2.52%2.65%3.07%3.22%
    下载: 导出CSV

    表 3  系统偏振测量精度${\rm{acc}}\_{{{S}}^{\left( {\sigma ,\delta } \right)}}$随HWP相位延迟误差$\sigma $和QWP相位延迟误差$\delta $的变化关系

    Table 3.  Variation relation of system polarization measurement accuracy ${\rm{acc}}\_{{{S}}^{\left( {\sigma ,\delta } \right)}}$ with the phase delay error $\sigma $ of HWP and the phase delay error $\delta $ of QWP.

    $\sigma$$\delta $
    −1.0°−0.9°−0.6°−0.5°0.5°0.6°0.9°1.0°
    −3.2°4.01%4.01%4.01%4.01%4.01%4.01%4.01%4.01%4.01%
    −3.1°3.88%3.88%3.88%3.88%3.88%3.88%3.88%3.88%3.88%
    −1.7°3.48%3.14%2.11%2.11%2.11%2.11%2.11%3.14%3.48%
    −1.6°3.48%3.14%2.09%1.99%1.99%1.99%2.09%3.14%3.48%
    −0.5°3.48%3.14%2.09%1.74%0.62%1.74%2.09%3.14%3.48%
    3.48%3.14%2.09%1.74%01.74%2.09%3.14%3.48%
    0.5°3.48%3.14%2.09%1.74%0.62%1.74%2.09%3.14%3.48%
    1.6°3.48%3.14%2.09%1.99%1.99%1.99%2.09%3.14%3.48%
    1.7°3.48%3.14%2.11%2.11%2.11%2.11%2.11%3.14%3.48%
    3.1°3.88%3.88%3.88%3.88%3.88%3.88%3.88%3.88%3.88%
    3.2°4.01%4.01%4.01%4.01%4.01%4.01%4.01%4.01%4.01%
    下载: 导出CSV

    表 4  实验光路中PSG的主要参数

    Table 4.  Parameters of PSG in the experimental optical path.

    参数名称参数值
    He-Ne激光器输出波长632.99 nm
    He-Ne激光器光强稳定性± 0.1%
    电动转台旋转精度0.005°
    偏振片消光系数≥ 10000∶1
    零级QWP相位延迟量89.87°@632.99 nm
    下载: 导出CSV

    表 5  实验光路中四分束偏振分析器的主要参数

    Table 5.  Parameters of the four-paths polarization analyzer in the experimental optical path.

    参数名称参数值
    PPBS分束比${{T_{\rm p}^{({\rm PPBS})}} / {T_{\rm s}^{({\rm PPBS})}}}$0.788/0.191
    零级HWP相位延迟量179.74°@632.99 nm
    零级QWP相位延迟量89.87°@632.99 nm
    零级HWP快轴方位角−22.5°
    零级QWP快轴方位角45°
    PBS1分束比${{T_{\rm{p}}^{({\rm{PBS1}})}} / {T_{\rm{s}}^{({\rm{PBS1}})}}}$0.981/0.0007
    PBS2分束比${{T_{\rm{p}}^{({\rm{PBS2}})}} / {T_{\rm{s}}^{({\rm{PBS2}})}}}$0.988/0.0008
    下载: 导出CSV
  • [1]

    Zhao H J, Xu W J 2016 Sensors 16 1223Google Scholar

    [2]

    韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 物理学报 67 054202

    Han P L, Liu F, Zhang G, Tao Y, Shao X P 2018 Acta Phys. Sin. 67 054202

    [3]

    Teimuraz K, Giorgi K, Barbara K, Giorge K, Vazha K, Eldar K, Otar K, David K 2017 A & A 2 20

    [4]

    钱鸿鹄, 孟炳寰, 袁银麟, 洪津, 张苗苗, 李双, 裘桢炜 2017 物理学报 66 100701Google Scholar

    Qian H H, Meng B H, Yuan Y L, Hong J, Zhang M M, Li S, Qiu Z W 2017 Acta Phys. Sin. 66 100701Google Scholar

    [5]

    Huang X, Bai J, Wang K, Liu Q, Luo Y, Yang K, Zhang X 2017 Opt. Express 25 001173Google Scholar

    [6]

    Jacques S L, Roussel S, Samatham R 2016 J. Biomed. Opt. 21 071115Google Scholar

    [7]

    Azzam R M A 1982 Opt. Acta 29 685Google Scholar

    [8]

    Pezzaniti J L, Chenault D, Roche M, Reinhardt J, Pezzaniti J P, Schultz H 2008 Proc. SPIE 6972 69720JGoogle Scholar

    [9]

    Oka K, Kaneko T 2003 Opt. Express 11 1510Google Scholar

    [10]

    Luo H T, Oka K, DeHoog E, Kudenov M, Schiewgerling J, Dereniak E L 2008 Appl. Opt. 47 4413Google Scholar

    [11]

    Cao Q Z, Zhang C M, DeHoog E 2012 Appl. Opt. 51 5791Google Scholar

    [12]

    Saito N, Odate S, Otaki K, Kubota M, Kitahara R, Oka K 2013 Proc. SPIE 8873 88730M−1Google Scholar

    [13]

    权乃承, 张淳民, 穆廷魁 2016 物理学报 65 080703

    Quan N C, Zhang C M, Mu T K 2016 Acta Phys. Sin. 65 080703

    [14]

    Feng B, Shi Z L, Liu H Z, Liu L, Zhao Y H, Zhang J C 2018 J. Optics-UK 20 065703Google Scholar

    [15]

    李翠丽, 孙晓兵, 王涵, 韦玮, 舒存铭 2014 光学学报 34 0412004

    Li C L, Sun X B, Wang H, Wei W, Shu C M 2014 Acta Optica Sinica 34 0412004

    [16]

    Liu Z, Yang W F, Ye Q H, Hong J, Gong G Y, Zheng X B 2016 Appl. Optics 55 1934Google Scholar

    [17]

    李浩, 朱京平, 张宁, 张云尧, 强帆, 宗康 2016 物理学报 65 134202Google Scholar

    Li H, Zhu J P, Zhang N, Zhang Y Y, Qiang F, Zong K 2016 Acta Phys. Sin. 65 134202Google Scholar

    [18]

    Mu T K, Zhang C M, Li Q W, Liang R G 2015 Opt. Express 23 10822Google Scholar

    [19]

    Alenin A S, Vaughn I J, Tyo J S 2018 Appl. Optics 57 2327Google Scholar

    [20]

    黎高平, 王雷, 谢毅 2009 宇航计测技术 29 55Google Scholar

    Li G P, Wang L, Xie Y 2009 Journal of Astronautic Metrology and Measurement 29 55Google Scholar

    [21]

    廖延彪 2003 偏振光学 (北京: 科学出版社)第45−63页

    Liao Y B 2003 Polarization Optics (Beijing: Science Press) pp45−63 (in Chinese)

  • [1] 徐菁焓, 吴国俊, 董晶, 于洋, 封斐, 刘博. 基于Stokes矢量差分法的背景光偏振特性研究. 物理学报, 2023, 72(24): 244201. doi: 10.7498/aps.72.20230639
    [2] 孙昇, 王超, 史浩东, 付强, 李英超. 分孔径离轴同时偏振超分辨率成像光学系统像差校正. 物理学报, 2022, 71(21): 214201. doi: 10.7498/aps.71.20220946
    [3] 吴迪, 蒋子珍, 喻欢欢, 张晨爽, 张娇, 林丹樱, 于斌, 屈军乐. 基于分数阶螺旋相位片的定量相位显微成像. 物理学报, 2021, 70(15): 158702. doi: 10.7498/aps.70.20201884
    [4] 韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏. 多尺度水下偏振成像方法. 物理学报, 2018, 67(5): 054202. doi: 10.7498/aps.67.20172009
    [5] 张敏睿, 贺正权, 汪韬, 田进寿. 偏振双向衰减对光学成像系统像质影响的矢量平面波谱理论分析. 物理学报, 2017, 66(8): 084202. doi: 10.7498/aps.66.084202
    [6] 钱鸿鹄, 孟炳寰, 袁银麟, 洪津, 张苗苗, 李双, 裘桢炜. 星载多角度偏振成像仪非偏通道全视场偏振效应测量及误差分析. 物理学报, 2017, 66(10): 100701. doi: 10.7498/aps.66.100701
    [7] 于慧, 张瑞, 李克武, 薛锐, 王志斌. 双强度调制静态傅里叶变换偏振成像光谱系统测量原理及仿真. 物理学报, 2017, 66(5): 054201. doi: 10.7498/aps.66.054201
    [8] 刘敬, 金伟其, 王霞, 鲁啸天, 温仁杰. 考虑探测器特性的光电偏振成像系统偏振信息重构方法. 物理学报, 2016, 65(9): 094201. doi: 10.7498/aps.65.094201
    [9] 李浩, 朱京平, 张宁, 张云尧, 强帆, 宗康. 半波片角度失配对通道调制型偏振成像效果的影响及补偿. 物理学报, 2016, 65(13): 134202. doi: 10.7498/aps.65.134202
    [10] 许洁, 刘飞, 刘杰涛, 王娇阳, 韩平丽, 周淙浩, 邵晓鹏. 基于渥拉斯顿棱镜的单路实时偏振成像系统设计. 物理学报, 2016, 65(13): 134201. doi: 10.7498/aps.65.134201
    [11] 强帆, 朱京平, 张云尧, 张宁, 李浩, 宗康, 曹莹瑜. 通道调制型偏振成像系统的偏振参量重建. 物理学报, 2016, 65(13): 130202. doi: 10.7498/aps.65.130202
    [12] 管今哥, 朱京平, 田恒, 侯洵. 基于Stokes矢量的实时偏振差分水下成像研究. 物理学报, 2015, 64(22): 224203. doi: 10.7498/aps.64.224203
    [13] 胡帅, 高太长, 李浩, 刘磊, 程天际, 张婷. 大气折射对可见光波段辐射传输特性的影响. 物理学报, 2015, 64(18): 184203. doi: 10.7498/aps.64.184203
    [14] 侯俊峰, 吴太夏, 王东光, 邓元勇, 张志勇, 孙英姿. 分时偏振成像系统中光束偏离的补偿方法研究. 物理学报, 2015, 64(6): 060701. doi: 10.7498/aps.64.060701
    [15] 李杰, 朱京平, 齐春, 郑传林, 高博, 张云尧, 侯洵. 静态傅里叶变换超光谱全偏振成像技术. 物理学报, 2013, 62(4): 044206. doi: 10.7498/aps.62.044206
    [16] 陈萍, 唐志列, 王娟, 付晓娣, 陈飞虎. 用Stokes参量法实现数字同轴偏振全息的研究. 物理学报, 2012, 61(10): 104202. doi: 10.7498/aps.61.104202
    [17] 陆世专, 游开明, 陈列尊, 王友文, 杨辉, 戴志平. 被圆相位片衍射的空心高斯光束的远场矢量结构特征. 物理学报, 2012, 61(23): 234201. doi: 10.7498/aps.61.234201
    [18] 康果果, 谭峤峰, 陈伟力, 李群庆, 金伟其, 金国藩. 亚波长金属线栅的设计、制备及偏振成像实验研究. 物理学报, 2011, 60(1): 014218. doi: 10.7498/aps.60.014218
    [19] 刘宁, 张淳民, 王金婵, 穆廷魁. 新型静态偏振风成像干涉仪理论探测误差的分析与计算. 物理学报, 2010, 59(6): 4369-4379. doi: 10.7498/aps.59.4369
    [20] 吴重庆, 付松年, 董晖, 刘海涛. 偏振模色散矢量的研究. 物理学报, 2002, 51(11): 2542-2546. doi: 10.7498/aps.51.2542
计量
  • 文章访问数:  10083
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-18
  • 修回日期:  2018-10-20
  • 上网日期:  2019-01-01
  • 刊出日期:  2019-01-20

/

返回文章
返回