-
论述了偏振型干涉成像光谱仪的核心部件Savart偏光镜的结构和分光机理. 应用波法线追迹的方法, 对光在任意方位入射面内, 以任意入射角入射时Savart偏光镜中的光线传播规律及出射光孔径变化进行了理论推导, 给出了出射孔径与入射位置、入射角及入射方位角之间满足的关系, 并讨论了光线传播始终处于Savart偏光镜晶体内部, 最终从出射面射出所需满足的条件. 采用计算机模拟, 给出了光线垂直入射时, 出射孔径的表达式, 验证了推导的正确性; 在此基础上对自行设计的干涉成像光谱仪通光孔径进行了详细分析和讨论, 结果表明通光孔径精确值和近似值之间存在较大差异. 给出了孔径面积利用率随入射方位角的变化曲线, 阐明在干涉成像光谱仪的参数论证以及孔径光阑的选取中, 不能忽略由于晶体双折射现象带来的孔径变化. 研究结果可为偏振型干涉成像光谱仪的设计、研制、调试和工程化提供重要的理论依据和实践指导.The principle of beam splitting of interference imaging spectrometer based on Savart plates is presented. The propagation track of light wave in crystal and the exit aperture is analysed by combining wave normal-tracing method with ray-tracing method at random incidence angle and azimuth angle. The relationship among exit aperture, incident angle, incident position and azimuth angle is deduced in detail. The requirements that the propagation track of light remains in Savart plates and would not exit from the top surface, bottom surface and side are discussed in detail. The area and the position of exit aperture are simulated by computer, which proves the correctness of the deduction for normal incidence of light. It is shown that the lateral shear of single Savart plate restricts the boundary of clear aperture, and the area of the clear aperture is only 85.73% against the total incident surface. The parameter of experimental prototype is introduced and the clear aperture is in detail analysed and discussed by the method mentioned above. The results show that the accurate and the approximate values of exit aperture area of experimental prototype are greatly different, and the position of exit aperture are shifted into the lower right, which may reduce the image quality and even cannot generate the double-beam interference fringes in some specific areas. The effective clear aperture as a function of azimuth angle is also presented. It shows that the used clear aperture area is between 0.8005 and 0.8547 while changes from 0 to 2, in order to match the conditions that the value of area availability decreases to 0.6976 when the light always propagates inside the Savart plates. The article shows that the change of clear aperture caused by crystal birefringence phenomenon cannot be ignored when selecting the instrument aperture stop and parameter of interference imaging spectrometer. The clear aperture of the two beams, o-light and e-light, which propagate in Savart plates should be calculated respectively and then they are used to determine the last clear apertures of plates. This study provides a theoretical and practical guidance for study, design, modulation, experiment and engineering of interference imaging spectrometers.
-
Keywords:
- Savart plates /
- clear aperture /
- wave normal-tracing method /
- interference imaging spectrometer
[1] Persky M J 1995 Rev. Sci. Instrum. 66 4763
[2] Du J, Zhang C M, Zhao B C, Sun Y 2008 Acta Phys. Sin. 57 6311 (in Chinese) [杜娟, 张淳民, 赵葆常, 孙尧 2008 物理学报 57 6311]
[3] Rafert J B, Sellar R G, Blatt J H 1995 Appl. Opt. 34 7228
[4] Tang Y H, Qin L, Gao H Y, Zhu C, Wang D Y 2011 Opt. Commun. 284 2672
[5] Ai J J, Zhang C M, Gao P, Jia C L 2013 Opt. Commun. 298 46
[6] Smith W H, Hammer P D 1996 Appl. Opt. 35 2902
[7] Zhang C M, Zhao B C, Xiang L B 2001 Acta Opt. Sin. 21 192 (in Chinese) [张淳民, 赵葆常, 相里斌 2001 光学学报 21 192]
[8] Wu L, Zhang C M, Yuan Y, Zhao B C 2005 Acta Opt. Sin. 25 885 (in Chinese) [吴磊, 张淳民, 袁艳, 赵葆常 2005 光学学报 25 885]
[9] Courtial J, Patterson B A, Harvey A R, Sibbett W, Padgett M J 1996 Appl. Opt. 35 6698
[10] Steers D, Sibbett W, Padgett M J 1998 Appl. Opt. 37 5777
[11] Montarou C C, Gaylord T K 1999 Appl. Opt. 38 6604
[12] Mu T K, Zhang C M, Zhao B C 2009 Acta Phys. Sin. 58 3877 (in Chinese) [穆廷魁, 张淳民, 赵葆常 2009 物理学报 58 3877]
[13] Zhang C M, Xiang L B, Zhao B C, Yuan X J 2002 Opt. Commun. 203 21
[14] He J, Zhang C M 2005 J. Opt. A: Pure Appl. Opt. 7 613
[15] Zhang C M, Wu H Y, Li J 2011 Opt. Eng. 50 066201
[16] Ai J J, Zhang C M, Jia C L, Gao P 2013 Optik 124 5751
[17] Zhang C M, Zhao J K, Sun Y 2011 Appl. Opt. 50 3497
[18] Ren W Y, Zhang C M, Jia C L, Mu T K, Li Q W, Zhang L 2013 Opt. Lett. 38 1295
[19] Luo H T, Oka K, DeHoog E, Kudenov M, Schiewgerling J, Dereniak E L 2008 Appl. Opt. 47 4413
[20] Mu T K, Zhang C M, Jia C M, Ren W Y 2012 Opt. Express 20 18194
[21] Oka K, Haga Y, Komaki Y 2013 Proc. SPIE 8873 88730R
[22] Cao Q Z, Zhang C M, DeHoog E 2012 Appl. Opt. 51 2791
[23] Wu L, Chang C M, Zhao B C 2007 Opt. Commun. 273 67
[24] Peng Z H, Zhang C M, Zhao B C, Li Y C, Wu F Q 2006 Acta Phys. Sin. 55 6374 (in Chinese) [彭志红, 张淳民, 赵葆常, 李英才, 吴福全 2006 物理学报 55 6374]
[25] Mu T K, Zhang C M, Li Q W, Zhang Lin, Wei Y T, Chen Q Y 2014 Opt. Express 22 5043
[26] Zhang C M, Mu T K, Ren W Y, Zhang Lin, Liu N 2010 Opt. Eng. 49 043002
[27] Wu J F, Zhang C M 2010 Chin. Phys. B 19 034201
[28] Zhang C M 2010 Study on Interference Imaging Spectroscopy (Beijing: Science Press) p59 (in Chinese) [张淳民 2010 干涉成像光谱技术 (北京:科学出版社) 第59页]
[29] Shen W M, Shao Z X 2002 Acta Opt. Sin. 22 765 (in Chinese) [沈为民, 邵中兴 2002 光学学报 22 765]
-
[1] Persky M J 1995 Rev. Sci. Instrum. 66 4763
[2] Du J, Zhang C M, Zhao B C, Sun Y 2008 Acta Phys. Sin. 57 6311 (in Chinese) [杜娟, 张淳民, 赵葆常, 孙尧 2008 物理学报 57 6311]
[3] Rafert J B, Sellar R G, Blatt J H 1995 Appl. Opt. 34 7228
[4] Tang Y H, Qin L, Gao H Y, Zhu C, Wang D Y 2011 Opt. Commun. 284 2672
[5] Ai J J, Zhang C M, Gao P, Jia C L 2013 Opt. Commun. 298 46
[6] Smith W H, Hammer P D 1996 Appl. Opt. 35 2902
[7] Zhang C M, Zhao B C, Xiang L B 2001 Acta Opt. Sin. 21 192 (in Chinese) [张淳民, 赵葆常, 相里斌 2001 光学学报 21 192]
[8] Wu L, Zhang C M, Yuan Y, Zhao B C 2005 Acta Opt. Sin. 25 885 (in Chinese) [吴磊, 张淳民, 袁艳, 赵葆常 2005 光学学报 25 885]
[9] Courtial J, Patterson B A, Harvey A R, Sibbett W, Padgett M J 1996 Appl. Opt. 35 6698
[10] Steers D, Sibbett W, Padgett M J 1998 Appl. Opt. 37 5777
[11] Montarou C C, Gaylord T K 1999 Appl. Opt. 38 6604
[12] Mu T K, Zhang C M, Zhao B C 2009 Acta Phys. Sin. 58 3877 (in Chinese) [穆廷魁, 张淳民, 赵葆常 2009 物理学报 58 3877]
[13] Zhang C M, Xiang L B, Zhao B C, Yuan X J 2002 Opt. Commun. 203 21
[14] He J, Zhang C M 2005 J. Opt. A: Pure Appl. Opt. 7 613
[15] Zhang C M, Wu H Y, Li J 2011 Opt. Eng. 50 066201
[16] Ai J J, Zhang C M, Jia C L, Gao P 2013 Optik 124 5751
[17] Zhang C M, Zhao J K, Sun Y 2011 Appl. Opt. 50 3497
[18] Ren W Y, Zhang C M, Jia C L, Mu T K, Li Q W, Zhang L 2013 Opt. Lett. 38 1295
[19] Luo H T, Oka K, DeHoog E, Kudenov M, Schiewgerling J, Dereniak E L 2008 Appl. Opt. 47 4413
[20] Mu T K, Zhang C M, Jia C M, Ren W Y 2012 Opt. Express 20 18194
[21] Oka K, Haga Y, Komaki Y 2013 Proc. SPIE 8873 88730R
[22] Cao Q Z, Zhang C M, DeHoog E 2012 Appl. Opt. 51 2791
[23] Wu L, Chang C M, Zhao B C 2007 Opt. Commun. 273 67
[24] Peng Z H, Zhang C M, Zhao B C, Li Y C, Wu F Q 2006 Acta Phys. Sin. 55 6374 (in Chinese) [彭志红, 张淳民, 赵葆常, 李英才, 吴福全 2006 物理学报 55 6374]
[25] Mu T K, Zhang C M, Li Q W, Zhang Lin, Wei Y T, Chen Q Y 2014 Opt. Express 22 5043
[26] Zhang C M, Mu T K, Ren W Y, Zhang Lin, Liu N 2010 Opt. Eng. 49 043002
[27] Wu J F, Zhang C M 2010 Chin. Phys. B 19 034201
[28] Zhang C M 2010 Study on Interference Imaging Spectroscopy (Beijing: Science Press) p59 (in Chinese) [张淳民 2010 干涉成像光谱技术 (北京:科学出版社) 第59页]
[29] Shen W M, Shao Z X 2002 Acta Opt. Sin. 22 765 (in Chinese) [沈为民, 邵中兴 2002 光学学报 22 765]
计量
- 文章访问数: 6172
- PDF下载量: 180
- 被引次数: 0