搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偏振型干涉成像光谱仪谱线位置定标方法的研究

魏宇童 刘尚阔 颜廷昱 李祺伟

引用本文:
Citation:

偏振型干涉成像光谱仪谱线位置定标方法的研究

魏宇童, 刘尚阔, 颜廷昱, 李祺伟

Study on the methods of calibrating spectral line position of interference imaging spectrometer

Wei Yu-Tong, Liu Shang-Kuo, Yan Ting-Yu, Li Qi-Wei
PDF
导出引用
  • 论述了偏振型干涉成像光谱仪的工作原理, 针对复原光谱谱线位置漂移问题, 提出了原理修正和数据处理两种具有代表性的实验室谱线位置定标方法, 给出了定标结果及对比分析. 原理修正方法从干涉型成像光谱仪的参数选择着手, 分析了产生谱线位置漂移的原因, 针对复原谱线位置随行变化的问题, 给出了修正方案, 使得谱线位置精度明显提高; 对于给定的四组激光器标准波长, 谱线位置均方根误差由定标前的28.3914下降至5.5371, 该方法对干涉型成像光谱仪具有普适性, 且其定标参数对分析仪器指标提供了便利. 数据处理方法弥补了原理修正定标存在的数据量大、短波定标效果弱等弊端, 谱线位置均方根误差下降至0.9178, 该方法实施简单, 对不同的输入波长, 所取不同行的数据用统一的表达式进行修正. 该方法化繁为简、间接定标的思想具有一定的借鉴价值. 该研究为偏振型干涉成像光谱仪的设计、研制、调试和工程化提供了重要的理论依据和实践指导.
    The principle of interference imaging spectrometer is presented. According to the drift of recovery spectral line position, two representative methods of calibrating the laboratory spectral line position are proposed, and the calibration results and their comparative analyses are given. One method of calibration is to correct the principle, which embarks from parameter selection of interference imaging spectrometer and the analysis of the reason why the spectral line position is drifted. Aiming at the problem that the position of spectral line changes with row, the correction scheme is given to improve the accuracy of spectral line position. For four given laser wavelengths, which are 543.5 nm, 594.1 nm, 612 nm, and 632.8 nm, the root-mean-square (RMS) error of spectral line position is reduced from 28.3914 to 5.5371 after calibration. For the interferometer system which has no dispersion, the accuracy of calibration is better than the dispersion system, and can be the same at all detected wavelengths. In this article, the calibration accuracy of long wave is better than that of short wave, which is dependent on the selection of the initial correction wavelength. This method achieves a kind of universality for interference imaging spectrometer and its calibration parameters provide a convenient way to analyze the instrument indexes. Another calibration method is data processing. It makes up the deficiencies of the method mentioned above: a large number of data are needed and the effect of calibration at short wave is not good enough. The RMS error of spectral line position is reduced to 0.9178, which proves that the calibration has a really high precision. This method is simple and can correct all the detected wavelengths and spectral lines by using two united formula. Though this method is not applicable for all the interference imaging spectrometers, the idea that makes hard things simple is deserving of our attention. We can use it in many other fields. The essence of the method is to change a variable quantity into a slowly varying quantity by algorithms, and then establish the relationship between the slowly varying quantity and the standard value. This idea can always make a substantial increase in efficiency of calibration and has a satisfied accuracy. Each of the two methods has advantages and disadvantages: which method we choose to use is dependent on the effect we want to achieve, and it is better to make their combination. This study provides a theoretical and practical guidance for study, design, modulation, experiment and engineering of interference imaging spectrometers.
      通信作者: 魏宇童, helln7@sina.com
    • 基金项目: 国家自然科学基金重点项目(批准号: 41530422)、国家自然科学基金(批准号: 61540018, 61275184, 61405153)、国家重大专项(批准号: 32-Y30B08-9001-13/15)、国家高技术研究发展计划(批准号: 2012AA121101)和教育部高等学校博士学科点专项科研基金(批准号: 20130201120047)资助的课题.
      Corresponding author: Wei Yu-Tong, helln7@sina.com
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 41530422), the National Natural Science Foundation of China (Grant Nos. 61540018, 61275184, 61405153), the National Major Project (Grant No. 32-Y30B08-9001-13/15), the National High Technology Research and Development Program of China (Grant No. 2012AA121101), and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130201120047).
    [1]

    Zhang C M, Huang W J, Zhao B C 2010 Acta Phys. Sin. 59 5479 (in Chinese) [张淳民, 黄伟健, 赵葆常 2010 物理学报 59 5479]

    [2]

    Justice C O, Vermote E, Townshenel J R G, Defries R, Roy D P, Hall D K 1998 Geosci. Remote Sens. 36 1228

    [3]

    Rast M, Bezy J L 1999 Inter. J. Remote Sens. 20 1681

    [4]

    Cutter, Mike A, Johns, Lisa S, Lobb, Dan R, Williams T L, Settle J J 2004 Imaging Spec. IX. Proc. SPIE 5159 392

    [5]

    Zhao B C, Yang J F, Chang L Y, Chen L W, He Y H, Xue B 2009 Acta Photon. Sin. 38 479 (in Chinese) [赵葆常, 杨建峰, 常凌颖, 陈立武, 贺应红, 薛彬 2009 光子学报 38 479]

    [6]

    Rafert J B, Sellar R G, Blatt J H 1995 Appl. Opt. 34 7228

    [7]

    Tang Y H, Qin L, Gao H Y, Zhu C, Wang D Y 2011 Opt. Commun. 284 2672

    [8]

    Ai J J, Zhang C M, Gao P, Jia C L 2013 Opt. Commun. 298 46

    [9]

    Smith W H, Hammer P D 1996 Appl. Opt. 35 2902

    [10]

    Zhang C M, Zhao B C, Xiang L B 2001 Acta Opt. Sin. 21 192 (in Chinese) [张淳民, 赵葆常, 相里斌 2001 光学学报 21 192]

    [11]

    Li Z W, Xiong W, Shi H L, Wang X H, Ye H H, Wei Q Y, Qiao Y L 2014 Acta Opt. Sin. 34 0430002-1 (in Chinese) [李志伟, 熊伟, 施海亮, 王先华, 叶函函, 韦秋叶, 乔延利 2014 光学学报 34 0430002-1]

    [12]

    Wang M Z, Yan L, Yang B, Gou Z Y 2013 Spectrosc. Spect. Anal. 33 2280 (in Chinese) [王明志, 晏磊, 杨彬, 勾志阳 2013 光谱学与光谱分析 33 2280]

    [13]

    Zhao B C, Yang J F, Xue B, Qiao W D, Qiu Y H 2010 Acta Photon. Sin. 39 769 (in Chinese) [赵葆常, 杨建峰, 薛彬, 乔卫东, 邱跃洪 2010 光子学报 39 769]

    [14]

    Gao J, Ji Z Y, Cui Y, Shi D L, Zhou J S, Xiang L B, Wang Z H 2009 Acta Photon. Sin. 38 2853 (in Chinese) [高静, 计忠瑛, 崔燕, 石大莲, 周锦松, 相里斌, 王忠厚 2009 光子学报 38 2853]

    [15]

    Liu Q Q, Zheng Y Q 2012 Chin. Opt. 5 566 (in Chinese) [刘倩倩, 郑玉权 2012 中国光学 5 566]

    [16]

    Anderson J M 1999 Int. J. Remote Sens. 20 535

    [17]

    Julia C J, Micheal W K, Maryn G S, Eustace L D 2011 Appl. Opt. 50 1170

    [18]

    Micheal W K, Eustace L D 2012 Opt. Express 20 17973

    [19]

    Kim J H, Jae H H, Jichai J 2015 J. Lightwave Technol. 33 3413

    [20]

    Mu T K, Zhang C M, Jia C L, Ren W Y 2012 Opt. Express 20 18194

    [21]

    Yuan Z L, Zhang C M, Zhao B C 2007 Acta Phys. Sin. 56 6413 (in Chinese) [袁志林, 张淳民, 赵葆常 2007 物理学报 56 6413]

    [22]

    Zhang C M, Xiang L B, Zhao B C, Zha X W 2003 Opt. Commun. 227 221

    [23]

    Ai J J, Zhang C M, Jia C L, Gao P 2013 Optik 124 5751

    [24]

    Zhang C M, Xiang L B, Zhao B C 2004 J. Opt. A: Pure Appl. Opt. 6 815

    [25]

    Zhang C M 2010 Study on Interference Imaging Spectroscopy (Beijing: Science Press) p51 (in Chinese) [张淳民 2010 干涉成像光谱技术 (北京:科学出版社) 第51页]

    [26]

    He J, Zhang C M 2005 J. Opt. A: Pure Appl. Opt. 7 613

    [27]

    Jian X H, Zhang C M, Zhang L, Zhao B C 2010 Opt. Express 18 5674

    [28]

    Jian X H, Zhang C M, Zhu B H, Ren W Y 2010 Acta Phys. Sin. 59 6131 (in Chinese) [简小华, 张淳民, 祝宝辉, 任文艺 2010 物理学报 59 6131]

    [29]

    Zhang C M, Jian X H 2010 Opt. Lett. 35 366

    [30]

    Ren W Y, Zhang C M, Jia C L, Mu T K, Li Q W, Zhang L 2013 Opt. Lett. 38 1295

    [31]

    Mu T K, Zhang C M, Zhao B C 2009 Opt. Commun. 282 1699

  • [1]

    Zhang C M, Huang W J, Zhao B C 2010 Acta Phys. Sin. 59 5479 (in Chinese) [张淳民, 黄伟健, 赵葆常 2010 物理学报 59 5479]

    [2]

    Justice C O, Vermote E, Townshenel J R G, Defries R, Roy D P, Hall D K 1998 Geosci. Remote Sens. 36 1228

    [3]

    Rast M, Bezy J L 1999 Inter. J. Remote Sens. 20 1681

    [4]

    Cutter, Mike A, Johns, Lisa S, Lobb, Dan R, Williams T L, Settle J J 2004 Imaging Spec. IX. Proc. SPIE 5159 392

    [5]

    Zhao B C, Yang J F, Chang L Y, Chen L W, He Y H, Xue B 2009 Acta Photon. Sin. 38 479 (in Chinese) [赵葆常, 杨建峰, 常凌颖, 陈立武, 贺应红, 薛彬 2009 光子学报 38 479]

    [6]

    Rafert J B, Sellar R G, Blatt J H 1995 Appl. Opt. 34 7228

    [7]

    Tang Y H, Qin L, Gao H Y, Zhu C, Wang D Y 2011 Opt. Commun. 284 2672

    [8]

    Ai J J, Zhang C M, Gao P, Jia C L 2013 Opt. Commun. 298 46

    [9]

    Smith W H, Hammer P D 1996 Appl. Opt. 35 2902

    [10]

    Zhang C M, Zhao B C, Xiang L B 2001 Acta Opt. Sin. 21 192 (in Chinese) [张淳民, 赵葆常, 相里斌 2001 光学学报 21 192]

    [11]

    Li Z W, Xiong W, Shi H L, Wang X H, Ye H H, Wei Q Y, Qiao Y L 2014 Acta Opt. Sin. 34 0430002-1 (in Chinese) [李志伟, 熊伟, 施海亮, 王先华, 叶函函, 韦秋叶, 乔延利 2014 光学学报 34 0430002-1]

    [12]

    Wang M Z, Yan L, Yang B, Gou Z Y 2013 Spectrosc. Spect. Anal. 33 2280 (in Chinese) [王明志, 晏磊, 杨彬, 勾志阳 2013 光谱学与光谱分析 33 2280]

    [13]

    Zhao B C, Yang J F, Xue B, Qiao W D, Qiu Y H 2010 Acta Photon. Sin. 39 769 (in Chinese) [赵葆常, 杨建峰, 薛彬, 乔卫东, 邱跃洪 2010 光子学报 39 769]

    [14]

    Gao J, Ji Z Y, Cui Y, Shi D L, Zhou J S, Xiang L B, Wang Z H 2009 Acta Photon. Sin. 38 2853 (in Chinese) [高静, 计忠瑛, 崔燕, 石大莲, 周锦松, 相里斌, 王忠厚 2009 光子学报 38 2853]

    [15]

    Liu Q Q, Zheng Y Q 2012 Chin. Opt. 5 566 (in Chinese) [刘倩倩, 郑玉权 2012 中国光学 5 566]

    [16]

    Anderson J M 1999 Int. J. Remote Sens. 20 535

    [17]

    Julia C J, Micheal W K, Maryn G S, Eustace L D 2011 Appl. Opt. 50 1170

    [18]

    Micheal W K, Eustace L D 2012 Opt. Express 20 17973

    [19]

    Kim J H, Jae H H, Jichai J 2015 J. Lightwave Technol. 33 3413

    [20]

    Mu T K, Zhang C M, Jia C L, Ren W Y 2012 Opt. Express 20 18194

    [21]

    Yuan Z L, Zhang C M, Zhao B C 2007 Acta Phys. Sin. 56 6413 (in Chinese) [袁志林, 张淳民, 赵葆常 2007 物理学报 56 6413]

    [22]

    Zhang C M, Xiang L B, Zhao B C, Zha X W 2003 Opt. Commun. 227 221

    [23]

    Ai J J, Zhang C M, Jia C L, Gao P 2013 Optik 124 5751

    [24]

    Zhang C M, Xiang L B, Zhao B C 2004 J. Opt. A: Pure Appl. Opt. 6 815

    [25]

    Zhang C M 2010 Study on Interference Imaging Spectroscopy (Beijing: Science Press) p51 (in Chinese) [张淳民 2010 干涉成像光谱技术 (北京:科学出版社) 第51页]

    [26]

    He J, Zhang C M 2005 J. Opt. A: Pure Appl. Opt. 7 613

    [27]

    Jian X H, Zhang C M, Zhang L, Zhao B C 2010 Opt. Express 18 5674

    [28]

    Jian X H, Zhang C M, Zhu B H, Ren W Y 2010 Acta Phys. Sin. 59 6131 (in Chinese) [简小华, 张淳民, 祝宝辉, 任文艺 2010 物理学报 59 6131]

    [29]

    Zhang C M, Jian X H 2010 Opt. Lett. 35 366

    [30]

    Ren W Y, Zhang C M, Jia C L, Mu T K, Li Q W, Zhang L 2013 Opt. Lett. 38 1295

    [31]

    Mu T K, Zhang C M, Zhao B C 2009 Opt. Commun. 282 1699

  • [1] 朱栋, 徐晗, 周寅, 吴彬, 程冰, 王凯楠, 陈佩军, 高世腾, 翁堪兴, 王河林, 彭树萍, 乔中坤, 王肖隆, 林强. 基于扩展卡尔曼滤波算法的船载绝对重力测量数据处理. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220071
    [2] 林婷婷, 李玥, 高兴, 万玲. 基于改进短时傅里叶变换的磁共振随机噪声消减方法. 物理学报, 2021, 70(16): 163303. doi: 10.7498/aps.70.20202044
    [3] 陈嘉伟, 王金栋, 曲兴华, 张福民. 光频梳频域干涉测距主要参数分析及一种改进的数据处理方法. 物理学报, 2019, 68(19): 190602. doi: 10.7498/aps.68.20190836
    [4] 沈勇, 董家齐, 徐红兵. 托卡马克离子温度梯度湍流输运同位素定标修正中杂质的影响. 物理学报, 2018, 67(19): 195203. doi: 10.7498/aps.67.20180703
    [5] 吕袭明, 李辉, 尤菁, 李伟, 王鹏业, 李明, 奚绪光, 窦硕星. 单分子荧光共振能量转移数据处理的优化算法. 物理学报, 2017, 66(11): 118701. doi: 10.7498/aps.66.118701
    [6] 高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛. Z箍缩Al等离子体X特征辐射谱线数值模拟及考虑叠加效应后的修正. 物理学报, 2014, 63(12): 125202. doi: 10.7498/aps.63.125202
    [7] 焦洋, 徐亮, 高闽光, 金岭, 童晶晶, 李胜, 魏秀丽. 污染气体扫描成像红外被动遥测系统实时数据处理研究. 物理学报, 2013, 62(14): 140705. doi: 10.7498/aps.62.140705
    [8] 刘扬阳, 吕群波, 曾晓茹, 黄旻, 相里斌. 静态计算光谱成像仪图谱反演的关键数据处理技术. 物理学报, 2013, 62(6): 060203. doi: 10.7498/aps.62.060203
    [9] 杨沛, 陈勇, 李志斌. 离散修正KdV方程的解析近似解. 物理学报, 2010, 59(6): 3668-3673. doi: 10.7498/aps.59.3668
    [10] 曾晓雄. Kerr-Newman黑洞的熵修正. 物理学报, 2010, 59(1): 92-96. doi: 10.7498/aps.59.92
    [11] 张丽春, 赵仁. Kerr-Newman-de Sitter黑洞辐射谱和熵修正. 物理学报, 2010, 59(4): 2217-2222. doi: 10.7498/aps.59.2217
    [12] 张哲, Obergfell Kyle, 韩先明, 陈向军. Monte-Carlo拟合算法及其在电子动量谱学实验数据处理中应用的研究. 物理学报, 2010, 59(3): 1695-1701. doi: 10.7498/aps.59.1695
    [13] 简小华, 张淳民, 祝宝辉, 任文艺. 时空混合调制型偏振干涉成像光谱仪数据处理研究. 物理学报, 2010, 59(9): 6131-6137. doi: 10.7498/aps.59.6131
    [14] 喻远琴, 林 珂, 于 锋, 周晓国, 刘世林, 马兴孝. 用CARS技术确定拉曼退偏比的一种数据处理新方法. 物理学报, 2007, 56(5): 2699-2703. doi: 10.7498/aps.56.2699
    [15] 孙可煦, 江少恩, 易荣清, 崔延莉, 丁永坤, 刘慎业. X射线二极管时间特性研究. 物理学报, 2006, 55(1): 68-75. doi: 10.7498/aps.55.68
    [16] 池凌飞, 林揆训, 姚若河, 林璇英, 余楚迎, 余云鹏. Langmuir单探针诊断射频辉光放电等离子体及其数据处理. 物理学报, 2001, 50(7): 1313-1317. doi: 10.7498/aps.50.1313
    [17] 姚若河, 池凌飞, 林璇英, 石旺舟, 林揆训. 射频辉光放电等离子体的电探针诊断及数据处理. 物理学报, 2000, 49(5): 922-925. doi: 10.7498/aps.49.922
    [18] 李宏成, 王瑞兰, 王平书, 管惟炎. 隧道电子谱的温度修正. 物理学报, 1986, 35(3): 393-396. doi: 10.7498/aps.35.393
    [19] 吴自勤, 段建中. 俄歇电子能谱中背散射修正因子的计算. 物理学报, 1984, 33(3): 419-424. doi: 10.7498/aps.33.419
    [20] 庆承瑞, 何祚庥. 氚核β衰变谱形的原子效应修正和中微子质量的测定. 物理学报, 1982, 31(5): 654-659. doi: 10.7498/aps.31.654
计量
  • 文章访问数:  3090
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-10
  • 修回日期:  2016-01-12
  • 刊出日期:  2016-04-05

偏振型干涉成像光谱仪谱线位置定标方法的研究

  • 1. 西安交通大学理学院, 西安 710049;
  • 2. 西安交通大学空间光学研究所, 西安 710049;
  • 3. 中国科学院西安光学精密机械研究所, 西安 710119
  • 通信作者: 魏宇童, helln7@sina.com
    基金项目: 国家自然科学基金重点项目(批准号: 41530422)、国家自然科学基金(批准号: 61540018, 61275184, 61405153)、国家重大专项(批准号: 32-Y30B08-9001-13/15)、国家高技术研究发展计划(批准号: 2012AA121101)和教育部高等学校博士学科点专项科研基金(批准号: 20130201120047)资助的课题.

摘要: 论述了偏振型干涉成像光谱仪的工作原理, 针对复原光谱谱线位置漂移问题, 提出了原理修正和数据处理两种具有代表性的实验室谱线位置定标方法, 给出了定标结果及对比分析. 原理修正方法从干涉型成像光谱仪的参数选择着手, 分析了产生谱线位置漂移的原因, 针对复原谱线位置随行变化的问题, 给出了修正方案, 使得谱线位置精度明显提高; 对于给定的四组激光器标准波长, 谱线位置均方根误差由定标前的28.3914下降至5.5371, 该方法对干涉型成像光谱仪具有普适性, 且其定标参数对分析仪器指标提供了便利. 数据处理方法弥补了原理修正定标存在的数据量大、短波定标效果弱等弊端, 谱线位置均方根误差下降至0.9178, 该方法实施简单, 对不同的输入波长, 所取不同行的数据用统一的表达式进行修正. 该方法化繁为简、间接定标的思想具有一定的借鉴价值. 该研究为偏振型干涉成像光谱仪的设计、研制、调试和工程化提供了重要的理论依据和实践指导.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回