搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于扩展卡尔曼滤波算法的船载绝对重力测量数据处理

朱栋 徐晗 周寅 吴彬 程冰 王凯楠 陈佩军 高世腾 翁堪兴 王河林 彭树萍 乔中坤 王肖隆 林强

引用本文:
Citation:

基于扩展卡尔曼滤波算法的船载绝对重力测量数据处理

朱栋, 徐晗, 周寅, 吴彬, 程冰, 王凯楠, 陈佩军, 高世腾, 翁堪兴, 王河林, 彭树萍, 乔中坤, 王肖隆, 林强

Data processing of shipborne absolute gravity measurement based on extended Kalman filter algorithm

Zhu Dong, Xu Han, Zhou Yin, Wu Bin, Cheng Bing, Wang Kai-Nan, Chen Pei-Jun, Gao Shi-Teng, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Qiao Zhong-Kun, Wang Xiao-Long, Lin Qiang
PDF
HTML
导出引用
  • 基于冷原子干涉仪的高精度绝对重力动态测量为海洋重力测量提供新的手段, 因而备受关注. 利用自己搭建的船载冷原子干涉式绝对重力测量系统, 在中国南海某海域开展了一系列测量实验. 在动态条件下, 测量噪声的抑制对测量性能的提升至关重要. 本文根据船载绝对重力动态测量系统的物理模型, 提出了一种基于扩展卡尔曼滤波算法的动态绝对重力数据处理方法, 对观测的原子干涉条纹数据进行了时域滤波处理, 获得了绝对重力值的最优估计. 基于该处理方法将航速小于2.1 km/h条件下的绝对重力测量灵敏度从300.2 mGal/Hz1/2提升至136.8 mGal/Hz1/2 (T = 4 ms). 此外, 将处理后的数据与利用地球重力模型(XGM2019)计算的数据进行了比对, 发现两者符合度较好. 这些结果证实了本文提出的数据处理方法的有效性, 并为船载冷原子干涉式绝对重力测量系统的测量噪声的抑制提供了一种新的处理方法.
    The precision dynamic measurement of absolute gravity based on the cold atom interferometer can provide a new method for marine gravimetry, so that it has attracted more attention. Based on the homemade shipborne cold atom interferometric absolute gravity measurement system, we carry out a series of measurement experiments in a certain area of the South China Sea. Under dynamic conditions, the suppression of measurement noise is essential for the improvement of the measurement performance. According to the physical model of the measurement system, in this paper a data processing method is proposed based on the extended Kalman filter algorithm for the absolute gravity dynamic measurement. The observed atomic interference fringe data are filtered in the time domain to estimate the absolute gravity value. Based on this processing method, the sensitivity of absolute gravity measurement under the condition of ship speed less than 2.1 km/h is improved from 300.2 mGal/Hz1/2 to 136.8 mGal/Hz1/2 (T = 4 ms). Comparing the processed data with the data calculated from the earth gravity model (XGM2019), it is found that both of the data are in good agreement. These results confirm the effectiveness of the data processing method proposed in this paper, and provide a new processing method of suppressing the measurement noise of shipborne cold atom interferometric absolute gravity measurement system.
      通信作者: 吴彬, wubin@zjut.edu.cn ; 林强, qlin@zjut.edu.cn
    • 基金项目: 国家重点研发计划课题(批准号: 2017YFC0601602)、国家自然科学基金(批准号: 51905482, 61727821, 61875175, 11704334)、中国自然资源航空物探遥感中心项目(批准号: DD20189831)和钱学森实验室太空探索实验培育项目(批准号: TKTSPY-2020-06-01)资助的课题.
      Corresponding author: Wu Bin, wubin@zjut.edu.cn ; Lin Qiang, qlin@zjut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFC0601602), the National Natural Science Foundation of China (Grant Nos. 51905482, 61727821, 61875175, 11704334). the China Aero Geophysical Survey and Remote Sensing Center for Natural Resources Program (Grant No. DD20189831), the Experiments for Space Exploration Program and the Qian Xuesen Laboratory, China Academy of Space Technology (Grant No. TKTSPY-2020-06-01)
    [1]

    Kasevich M, Chu S 1992 Appl. Phys. B:Photophys. Laser Chem. 54 321Google Scholar

    [2]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [3]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107Google Scholar

    [4]

    Ménoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B 2018 Sci. Rep. 8 1

    [5]

    Fu Z, Wang Q, Wang Z, Wu B, Cheng B, Lin Q 2019 Chin. Opt. Lett. 17 011204Google Scholar

    [6]

    Huang P W, Tang B, Chen X, Zhong J Q, Xiong Z Y, Zhou L, Wang J, Zhan M S 2019 Metrologia 56 045012Google Scholar

    [7]

    Jiang Z, Palinkas V, Arias F E, et al. 2012 Metrologia 49 666Google Scholar

    [8]

    Farah T, Guerlin C, Landragin A, Bouyer P, Gaffet S, Dos Santos F P, Merlet S 2014 Gyroscopy and Navigation 5 266Google Scholar

    [9]

    Gillot P, Francis O, Landragin A, Dos Santos F P, Merlet S 2014 Metrologia 51 L15Google Scholar

    [10]

    Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H G, Muller J, Peters A 2016 J. Phys. Conf. Ser. 723 012050Google Scholar

    [11]

    Geiger R, Menoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M, Bidel Y, Bresson A, Landragin A, Bouyer P 2011 Nat. Commun. 2 474Google Scholar

    [12]

    Fu Z J, Wu B, Cheng B, Zhou Y, Weng K X, Zhu D, Wang Z Y, Lin Q 2019 Metrologia 56 025001Google Scholar

    [13]

    Wu X, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Muller H 2019 Sci. Adv. 5 eaax0800Google Scholar

    [14]

    吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 物理学报 69 060302Google Scholar

    Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin. 69 060302Google Scholar

    [15]

    Wu S, Feng J, Li C, Su D, Wang Q, Hu R, Mou L 2021 J. Geod. 95 63Google Scholar

    [16]

    程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2021 物理学报 70 040304Google Scholar

    Cheng B, Zhou Y, Chen P J, Zhang K J, Zhu D, Wang K N, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2021 Acta Phys. Sin. 70 040304Google Scholar

    [17]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geod. 94 20Google Scholar

    [18]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 627Google Scholar

    [19]

    Merlet S, Le Goueet J, Bodart Q, Clairon A, Landragin A, Dos Santos F P, Rouchon P 2009 Metrologia 46 87Google Scholar

    [20]

    Reif K, Gunther S, Yaz E, Unbehauen R 1999 IEEE Trans. Autom. Control 44 714Google Scholar

    [21]

    Kappl J J 1971 IEEE Trans. Aerosp. Electron. Syst. aes-7 79

    [22]

    Sastry V A, Noton A R M 1971 IEEE Trans. Autom. Control 16 260Google Scholar

    [23]

    Canciani A, Raquet J 2012 Proceedings of the 2012 International Technical Meeting of The Institute of Navigation, 2012 pp151–185

    [24]

    Tennstedt B, Schön S 2021 Proceedings of 28th St. Petersburg International Conference on Integrated Navigation Systems, 2021

    [25]

    Jiménez-Martínez R, Kołodyński J, Troullinou C, Lucivero V G, Kong J, Mitchell M W 2018 Phys. Rev. Lett. 120 040503Google Scholar

    [26]

    Cheiney P, Fouche L, Templier S, Napolitano F, Battelier B, Bouyer P, Barrett B 2018 Phys. Rev. Appl. 10 034030Google Scholar

    [27]

    Wu B, Zhu D, Cheng B, Wu L, Wang K, Wang Z, Shu Q, Li R, Wang H, Wang X, Lin Q 2019 Opt. Express 27 11252Google Scholar

    [28]

    吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强 2018 物理学报 67 190302Google Scholar

    Wu B, Cheng B, Fu Z-J, Zhu D, Zhou Y, Weng K X, Wang X L, Lin Q 2018 Acta Phys. Sin. 67 190302Google Scholar

    [29]

    Cheinet P, Canuel B, Dos Santos F P, Gauguet A, Yver-Leduc F, Landragin A 2008 IEEE Trans. Instrum. Meas. 57 1141Google Scholar

    [30]

    Zingerle P, Pail R, Gruber T, Oikonomidou X 2020 J. Geod. 94 1Google Scholar

    [31]

    Zhu D, Zhou Y, Wu B, Weng K, Wang K, Cheng B, Lin Q 2021 Appl. Opt. 60 7910Google Scholar

    [32]

    Gauguet A, Mehlstäubler T E, Lévèque T, Gouët J L, Chaibi O, Canuel B, Clairon A, Santos F P D, Landragin A 2008 Phys. Rev. A 78 4702

    [33]

    Baumann H, Klingele E E, Marson I 2012 Geophys. Prospect. 60 361Google Scholar

  • 图 1  船载冷原子干涉式绝对重力动态测量原理

    Fig. 1.  The principle of absolute gravity dynamic measurement based on cold atom interferometer on ship.

    图 2  船载绝对重力动态测量系统示意图

    Fig. 2.  Schematic diagram of marine dynamic absolute gravity measurement system.

    图 3  可移动的原子重力仪实验室 (a)实验室内部仪器设备布局示意图; (b)可移动实验室实物图

    Fig. 3.  Transportable laboratory for atomic gravimeter: (a) Schematic diagram of the internal layout of instruments and equipments in the laboratory; (b) photo of the transportable laboratory.

    图 4  绝对重力动态测量的航线与船速 (a)航行路线; (b)航行速度

    Fig. 4.  Route and ship speed of absolute gravity dynamic measurement: (a) Sailing route of the ship; (b) speed of the ship.

    图 5  船载动态测量的振动环境与原子干涉条纹 (a)竖直方向振动加速度的功率谱密度(PSD); (b)原子干涉条纹

    Fig. 5.  The vibration environment and atomic interference fringes for shipborne dynamic measurements: (a) Power spectral density (PSD) of the vertical vibration acceleration; (b) atomic interference fringes.

    图 6  绝对重力值原始数据

    Fig. 6.  Raw data for absolute gravity values.

    图 7  通过不同算法获得的重力值的Allan偏差数据

    Fig. 7.  Allan deviation data of gravity values obtained by different algorithms.

    图 8  动态绝对重力数据处理结果 (a)使用不同算法获得的绝对重力值; (b)修正系统误差后的绝对重力值; (c)绝对重力值gEst与由重力模型计算的结果的残差数据

    Fig. 8.  Comparison of the absolute gravity data: (a) Absolute gravity values obtained by the different algorithms; (b) absolute gravity values obtained after correcting the systematic errors; (c) the residual data between the absolute gravity values gEst and the calculated results based on the gravity model.

  • [1]

    Kasevich M, Chu S 1992 Appl. Phys. B:Photophys. Laser Chem. 54 321Google Scholar

    [2]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [3]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107Google Scholar

    [4]

    Ménoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B 2018 Sci. Rep. 8 1

    [5]

    Fu Z, Wang Q, Wang Z, Wu B, Cheng B, Lin Q 2019 Chin. Opt. Lett. 17 011204Google Scholar

    [6]

    Huang P W, Tang B, Chen X, Zhong J Q, Xiong Z Y, Zhou L, Wang J, Zhan M S 2019 Metrologia 56 045012Google Scholar

    [7]

    Jiang Z, Palinkas V, Arias F E, et al. 2012 Metrologia 49 666Google Scholar

    [8]

    Farah T, Guerlin C, Landragin A, Bouyer P, Gaffet S, Dos Santos F P, Merlet S 2014 Gyroscopy and Navigation 5 266Google Scholar

    [9]

    Gillot P, Francis O, Landragin A, Dos Santos F P, Merlet S 2014 Metrologia 51 L15Google Scholar

    [10]

    Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H G, Muller J, Peters A 2016 J. Phys. Conf. Ser. 723 012050Google Scholar

    [11]

    Geiger R, Menoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M, Bidel Y, Bresson A, Landragin A, Bouyer P 2011 Nat. Commun. 2 474Google Scholar

    [12]

    Fu Z J, Wu B, Cheng B, Zhou Y, Weng K X, Zhu D, Wang Z Y, Lin Q 2019 Metrologia 56 025001Google Scholar

    [13]

    Wu X, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Muller H 2019 Sci. Adv. 5 eaax0800Google Scholar

    [14]

    吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 物理学报 69 060302Google Scholar

    Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin. 69 060302Google Scholar

    [15]

    Wu S, Feng J, Li C, Su D, Wang Q, Hu R, Mou L 2021 J. Geod. 95 63Google Scholar

    [16]

    程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2021 物理学报 70 040304Google Scholar

    Cheng B, Zhou Y, Chen P J, Zhang K J, Zhu D, Wang K N, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2021 Acta Phys. Sin. 70 040304Google Scholar

    [17]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geod. 94 20Google Scholar

    [18]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 627Google Scholar

    [19]

    Merlet S, Le Goueet J, Bodart Q, Clairon A, Landragin A, Dos Santos F P, Rouchon P 2009 Metrologia 46 87Google Scholar

    [20]

    Reif K, Gunther S, Yaz E, Unbehauen R 1999 IEEE Trans. Autom. Control 44 714Google Scholar

    [21]

    Kappl J J 1971 IEEE Trans. Aerosp. Electron. Syst. aes-7 79

    [22]

    Sastry V A, Noton A R M 1971 IEEE Trans. Autom. Control 16 260Google Scholar

    [23]

    Canciani A, Raquet J 2012 Proceedings of the 2012 International Technical Meeting of The Institute of Navigation, 2012 pp151–185

    [24]

    Tennstedt B, Schön S 2021 Proceedings of 28th St. Petersburg International Conference on Integrated Navigation Systems, 2021

    [25]

    Jiménez-Martínez R, Kołodyński J, Troullinou C, Lucivero V G, Kong J, Mitchell M W 2018 Phys. Rev. Lett. 120 040503Google Scholar

    [26]

    Cheiney P, Fouche L, Templier S, Napolitano F, Battelier B, Bouyer P, Barrett B 2018 Phys. Rev. Appl. 10 034030Google Scholar

    [27]

    Wu B, Zhu D, Cheng B, Wu L, Wang K, Wang Z, Shu Q, Li R, Wang H, Wang X, Lin Q 2019 Opt. Express 27 11252Google Scholar

    [28]

    吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强 2018 物理学报 67 190302Google Scholar

    Wu B, Cheng B, Fu Z-J, Zhu D, Zhou Y, Weng K X, Wang X L, Lin Q 2018 Acta Phys. Sin. 67 190302Google Scholar

    [29]

    Cheinet P, Canuel B, Dos Santos F P, Gauguet A, Yver-Leduc F, Landragin A 2008 IEEE Trans. Instrum. Meas. 57 1141Google Scholar

    [30]

    Zingerle P, Pail R, Gruber T, Oikonomidou X 2020 J. Geod. 94 1Google Scholar

    [31]

    Zhu D, Zhou Y, Wu B, Weng K, Wang K, Cheng B, Lin Q 2021 Appl. Opt. 60 7910Google Scholar

    [32]

    Gauguet A, Mehlstäubler T E, Lévèque T, Gouët J L, Chaibi O, Canuel B, Clairon A, Santos F P D, Landragin A 2008 Phys. Rev. A 78 4702

    [33]

    Baumann H, Klingele E E, Marson I 2012 Geophys. Prospect. 60 361Google Scholar

  • [1] 车浩, 李安, 方杰, 葛贵国, 高伟, 张亚, 刘超, 许江宁, 常路宾, 黄春福, 龚文斌, 李冬毅, 陈曦, 覃方君. 基于冷原子重力仪的船载动态绝对重力测量实验研究. 物理学报, 2022, 71(11): 113701. doi: 10.7498/aps.71.20220113
    [2] 文艺, 伍康, 王力军. 绝对重力测量中振动传感器振动补偿性能的分析. 物理学报, 2022, 71(4): 049101. doi: 10.7498/aps.71.20211686
    [3] 王凯楠, 徐晗, 周寅, 许云鹏, 宋微, 汤鸿志, 王巧薇, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 程冰, 李德钊, 乔中坤, 吴彬, 林强. 基于车载原子重力仪的外场绝对重力快速测绘研究. 物理学报, 2022, 71(15): 159101. doi: 10.7498/aps.71.20220267
    [4] 程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于冷原子重力仪的绝对重力动态移动测量实验. 物理学报, 2022, 71(2): 026701. doi: 10.7498/aps.71.20211449
    [5] 要佳敏, 庄伟, 冯金扬, 王启宇, 赵阳, 王少凯, 吴书清, 李天初. 固定相位振动噪声对绝对重力测量的影响. 物理学报, 2021, 70(21): 219101. doi: 10.7498/aps.70.20210884
    [6] 王凯楠, 程冰, 周寅, 陈佩军, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于1560 nm外腔式激光器的拉曼光锁相技术. 物理学报, 2021, 70(17): 170303. doi: 10.7498/aps.70.20210432
    [7] 文艺, 伍康, 王力军. 绝对重力测量中振动传感器振动补偿性能的分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211686
    [8] 程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于冷原子重力仪的绝对重力动态移动测量实验研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211449
    [9] 程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 船载系泊状态下基于原子重力仪的绝对重力测量. 物理学报, 2021, 70(4): 040304. doi: 10.7498/aps.70.20201522
    [10] 林丹樱, 牛敬敬, 刘雄波, 张潇, 张娇, 于斌, 屈军乐. 荧光寿命数据的相量分析及其应用. 物理学报, 2020, 69(16): 168703. doi: 10.7498/aps.69.20200554
    [11] 吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强. 基于原子重力仪的车载静态绝对重力测量. 物理学报, 2020, 69(6): 060302. doi: 10.7498/aps.69.20191765
    [12] 陈斌, 龙金宝, 谢宏泰, 陈泺侃, 陈帅. 可移动三维主动减振系统及其在原子干涉重力仪上的应用. 物理学报, 2019, 68(18): 183301. doi: 10.7498/aps.68.20190443
    [13] 吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强. 拉曼激光边带效应对冷原子重力仪测量精度的影响. 物理学报, 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [14] 王谨, 詹明生. 基于原子干涉仪的微观粒子弱等效原理检验. 物理学报, 2018, 67(16): 160402. doi: 10.7498/aps.67.20180621
    [15] 吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强. 大倾斜角度下基于冷原子重力仪的绝对重力测量. 物理学报, 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [16] 杨威, 孙大立, 周林, 王谨, 詹明生. 用于原子干涉仪实验的锂原子的塞曼减速与磁光囚禁. 物理学报, 2014, 63(15): 153701. doi: 10.7498/aps.63.153701
    [17] 胡华, 伍康, 申磊, 李刚, 王力军. 新型高精度绝对重力仪. 物理学报, 2012, 61(9): 099101. doi: 10.7498/aps.61.099101
    [18] 任利春, 周林, 李润兵, 刘敏, 王谨, 詹明生. 不同序列拉曼光脉冲对原子重力仪灵敏度的影响. 物理学报, 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [19] 朱常兴, 冯焱颖, 叶雄英, 周兆英, 周永佳, 薛洪波. 利用原子干涉仪的相位调制进行绝对转动测量. 物理学报, 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [20] 郑森林, 陈 君, 林 强. 光脉冲序列对三能级原子重力仪测量精度的影响. 物理学报, 2005, 54(8): 3535-3541. doi: 10.7498/aps.54.3535
计量
  • 文章访问数:  3931
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-10
  • 修回日期:  2022-03-14
  • 上网日期:  2022-03-29
  • 刊出日期:  2022-07-05

/

返回文章
返回