搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大倾斜角度下基于冷原子重力仪的绝对重力测量

吴彬 程冰 付志杰 朱栋 周寅 翁堪兴 王肖隆 林强

引用本文:
Citation:

大倾斜角度下基于冷原子重力仪的绝对重力测量

吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强

Measurement of absolute gravity based on cold atom gravimeter at large tilt angle

Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Zhou Yin, Weng Kan-Xing, Wang Xiao-Long, Lin Qiang
PDF
导出引用
  • 冷原子重力仪的倾斜角会对绝对重力测量产生显著的影响.高精度的绝对重力测量需要对重力仪的倾斜角进行精确的测量、控制及校正.本文从理论上分析了四种不同情况下倾斜对绝对重力测量的影响规律,并在实验上对得到的理论进行了实验验证.基于此,设计了一种基于双倾斜计的绝对重力测量方案,主要是为了解决恶劣测量环境下的冷原子重力仪倾斜漂移问题.此方案利用高精度倾斜计记录放置在被动隔振平台上的拉曼反射镜的倾斜角度,并使用另外一个倾斜计监控真空系统的倾斜,以实现振动噪声的抑制和倾斜的高精度测量.基于自研的小型化冷原子重力仪,对该方案进行了实验验证,并最终实现了车间复杂环境下的高精度绝对重力测量.由于倾斜得到精确测量和补偿,冷原子重力仪的测量精度达到了12.3 μGal.本文为复杂环境下的高精度绝对重力测量提供了一种可行的方案,为冷原子重力仪的实用化提供了参考数据.
    The tilt angle of a cold atom gravimeter (CAG) could have a significant influence on the measurement of absolute gravity. The measurement, manipulation, and compensation of the tilt for CAG need to be conducted in order to obtain a high-accuracy absolute gravity measurement. In this paper, firstly, the influences of tilt on absolute gravity measurement under four different conditions are analyzed theoretically by taking into account the position of vacuum system relative to Raman retro-reflection mirror. Then, the experimental investigation is carried out and it is found that the measured results agree well with the theoretical prediction curves. According to the analysis above, we design a scheme for absolute gravity measurement based on two inclinometers, mainly to solve the problem of long-term tilt drift of CAG especially in harsh measurement environment. In this scheme, a high-resolution inclinometer is used to record the tilt angle of Raman retro-reflection mirror, which is fixed on a passive vibration isolation platform. Besides, another inclinometer is utilized to monitor the tilt angle of vacuum chamber of the CAG. By doing so, the vibration noise can be suppressed and the tilt data can be measured with a high precision. Finally, the experimental verification of this proposal is carried out based on our homemade compact cold atom gravimeter, and the high accuracy absolute gravity measurement is realized in a complex workshop environment. Since the vibration noise of Raman mirror is improved by using the vibration isolation platform, the sensitivity of our CAG can reach 319 μGal √Hz. Besides, we measure the long-term changes of gravity with time and find that the experimental results are consistent with the curves calculated by theoretical tidal model. Moreover, due to the precise measurement and compensation for the tilt drift, the accuracy of our CAG is estimated at 12.3 μGal. In order to evaluate this system accuracy, a comparison between our CAG and the FG5 at the same measured site is made. The absolute gravity values determined by both gravimeters coincide with each other. In this paper, we provide a feasible scheme for measuring the absolute gravity in the complex environment. The experimental demonstration of this measurement scheme is performed thereby acquiring some valuable reference data for the practical use of CAG.
      通信作者: 林强, qlin@zju.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2017YFC0601602,2016YFF0200206)和国家自然科学基金(批准号:61727821,61475139,61478069,11604296,11404286)资助的课题.
      Corresponding author: Lin Qiang, qlin@zju.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFC0601602, 2016YFF0200206) and the National Natural Science Foundation of China (Grant Nos. 61727821, 61475139, 61478069, 11604296, 11404286).
    [1]

    Kasevich M, Chu S 1992 Appl. Phys. B 54 321

    [2]

    Hu H, Wu K, Shen L, Li G, Wang L J 2012 Acta Phys. Sin. 61 099101 (in Chinese) [胡华, 伍康, 申磊, 李刚, 王力军 2012 物理学报 61 099101]

    [3]

    Niebauer T, Sasagawa G, Faller J, Hilt R, Klopping F 1995 Metrologia 32 159

    [4]

    Kasevich M, Chu S 1991 Phys. Rev. Lett. 67 181

    [5]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25

    [6]

    Yu N, Kohel J M, Kellogg J R, Maleki L 2006 Appl. Phys. B 84 647

    [7]

    Lamporesi G, Bertoldi A, Cacciapuoti L, Prevedelli M, Tino G M 2008 Phys. Rev. Lett. 100 050801

    [8]

    Le Gouët J, Mehlstäubler T E, Kim J, Merlet S, Clairon A, Landragin A, Dos Santos F P 2008 Appl. Phys. B 92 133

    [9]

    Zhou M K, Hu Z K, Duan X C, Sun B L, Zhao J B, Luo J 2009 Front. Phys. China 4 170

    [10]

    Zhou L, Xiong Z Y, Yang W, Tang B, Peng W C, Wang Y B, Xu P, Wang J, Zhan M S 2011 Chin. Phys. Lett. 28 013701

    [11]

    Zhou M K, Hu Z K, Duan X C, Sun B L, Chen L L, Zhang Q Z, Luo J 2012 Phys. Rev. A 86 043630

    [12]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107

    [13]

    Hauth M, Freier C, Schkolnik V, Senger A, Schmidt M, Peters A 2013 Appl. Phys. B 113 49

    [14]

    Wu B, Wang Z Y, Cheng B, Wang Q Y, Xu A P, Lin Q 2014 Metrologia 51 452

    [15]

    Zhou M K, Duan X C, Chen L L, Luo Q, Xu Y Y, Hu Z K 2015 Chin. Phys. B 24 50401

    [16]

    Wang J 2015 Chin. Phys. B 24 053702

    [17]

    Bodart Q, Merlet S, Malossi N, Dos Santos F P, Bouyer P, Landragin A 2010 Appl. Phys. Lett. 96 134101

    [18]

    Sorrentino F, Bongs K, Bouyer P, Cacciapuoti L, Angelis M, Dittus H, Ertmer W, Giorgini A, Hartwig J, Hauth M, Herrmann S, Inguscio M, Kajari E, Könemann T T, Lämmerzahl C, Landragin A, Modugno G, Pereira dos Santos F, Peters A, Prevedelli M, Rasel E M, Schleich W P, Schmidt M, Senger A, Sengstock K, Stern G, Tino G M, Walser R 2010 Microgr. Sci. Technol. 22 551

    [19]

    Carraz O, Lienhart F, Charrière R, Cadoret M, Zahzam N, Bidel Y, Bresson A 2009 Appl. Phys. B 97 405

    [20]

    Lévèque T, Antoni-Micollier L, Faure B, Berthon J 2013 Appl. Phys. B 116 997

    [21]

    Butts D L, Kinast J M, Timmons B P, Stoner R E 2011 J. Opt. Soc. Am. B 28 416

    [22]

    McGuinness H J, Rakholia A V, Biedermann G W 2012 Appl. Phys. Lett. 100 011106

    [23]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 627

    [24]

    Schkolnik V, Hellmig O, Wenzlawski A, Grosse J, Kohfeldt A, Doringshoff K, Wicht A, Windpassinger P, Sengstock K, Braxmaier C, Krutzik M, Peters A 2016 Appl. Phys. B 122 217

    [25]

    Fang J, Hu J G, Chen X, Zhu H R, Zhou L, Zhong J Q, Wang J, Zhan M S 2018 Opt. Express 26 1586

    [26]

    Geiger R, Menoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M, Bidel Y, Bresson A, Landragin A, Bouyer P 2011 Nat. Commun. 2 474

    [27]

    Rushton J, Aldous M, Himsworth M 2014 Rev. Sci. Instrum. 85 121501

    [28]

    Merlet S, Bodart Q, Malossi N, Landragin A, Dos Santos F P, Gitlein O, Timmen L 2010 Metrologia 47 9

    [29]

    Louchet-Chauvet A, Merlet S, Bodart Q, Landragin A, Dos Santos F P, Baumann H, D'Agostino G, Origlia C 2011 IEEE Tran. Instrum. Meas. 60 2527

    [30]

    Poli N, Wang F Y, Tarallo M G, Alberti A, Prevedelli M, Tino G M 2011 Phys. Rev. Lett. 106 038501

    [31]

    Gillot P, Francis O, Landragin A, Dos Santos F P, Merlet S 2014 Metrologia 51 L15

    [32]

    Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H G, Muller J, Peters A 2016 8th Symposium on Frequency Standards and Metrology 2016 Potsdam Germany 012050

    [33]

    Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 043610

    [34]

    Schmidt M, Senger A, Hauth M, Freier C, Schkolnik V, Peters A 2011 Gyroscopy and Navigation 2 170

    [35]

    Louchet-Chauvet A, Farah T, Bodart Q, Clairon A, Landragin A, Merlet S, Pereira Dos Santos F 2011 New J. Phys. 13 065025

    [36]

    Merlet S, Volodimer L, Lours M, Dos Santos F P 2014 Appl. Phys. B 117 749

  • [1]

    Kasevich M, Chu S 1992 Appl. Phys. B 54 321

    [2]

    Hu H, Wu K, Shen L, Li G, Wang L J 2012 Acta Phys. Sin. 61 099101 (in Chinese) [胡华, 伍康, 申磊, 李刚, 王力军 2012 物理学报 61 099101]

    [3]

    Niebauer T, Sasagawa G, Faller J, Hilt R, Klopping F 1995 Metrologia 32 159

    [4]

    Kasevich M, Chu S 1991 Phys. Rev. Lett. 67 181

    [5]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25

    [6]

    Yu N, Kohel J M, Kellogg J R, Maleki L 2006 Appl. Phys. B 84 647

    [7]

    Lamporesi G, Bertoldi A, Cacciapuoti L, Prevedelli M, Tino G M 2008 Phys. Rev. Lett. 100 050801

    [8]

    Le Gouët J, Mehlstäubler T E, Kim J, Merlet S, Clairon A, Landragin A, Dos Santos F P 2008 Appl. Phys. B 92 133

    [9]

    Zhou M K, Hu Z K, Duan X C, Sun B L, Zhao J B, Luo J 2009 Front. Phys. China 4 170

    [10]

    Zhou L, Xiong Z Y, Yang W, Tang B, Peng W C, Wang Y B, Xu P, Wang J, Zhan M S 2011 Chin. Phys. Lett. 28 013701

    [11]

    Zhou M K, Hu Z K, Duan X C, Sun B L, Chen L L, Zhang Q Z, Luo J 2012 Phys. Rev. A 86 043630

    [12]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107

    [13]

    Hauth M, Freier C, Schkolnik V, Senger A, Schmidt M, Peters A 2013 Appl. Phys. B 113 49

    [14]

    Wu B, Wang Z Y, Cheng B, Wang Q Y, Xu A P, Lin Q 2014 Metrologia 51 452

    [15]

    Zhou M K, Duan X C, Chen L L, Luo Q, Xu Y Y, Hu Z K 2015 Chin. Phys. B 24 50401

    [16]

    Wang J 2015 Chin. Phys. B 24 053702

    [17]

    Bodart Q, Merlet S, Malossi N, Dos Santos F P, Bouyer P, Landragin A 2010 Appl. Phys. Lett. 96 134101

    [18]

    Sorrentino F, Bongs K, Bouyer P, Cacciapuoti L, Angelis M, Dittus H, Ertmer W, Giorgini A, Hartwig J, Hauth M, Herrmann S, Inguscio M, Kajari E, Könemann T T, Lämmerzahl C, Landragin A, Modugno G, Pereira dos Santos F, Peters A, Prevedelli M, Rasel E M, Schleich W P, Schmidt M, Senger A, Sengstock K, Stern G, Tino G M, Walser R 2010 Microgr. Sci. Technol. 22 551

    [19]

    Carraz O, Lienhart F, Charrière R, Cadoret M, Zahzam N, Bidel Y, Bresson A 2009 Appl. Phys. B 97 405

    [20]

    Lévèque T, Antoni-Micollier L, Faure B, Berthon J 2013 Appl. Phys. B 116 997

    [21]

    Butts D L, Kinast J M, Timmons B P, Stoner R E 2011 J. Opt. Soc. Am. B 28 416

    [22]

    McGuinness H J, Rakholia A V, Biedermann G W 2012 Appl. Phys. Lett. 100 011106

    [23]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 627

    [24]

    Schkolnik V, Hellmig O, Wenzlawski A, Grosse J, Kohfeldt A, Doringshoff K, Wicht A, Windpassinger P, Sengstock K, Braxmaier C, Krutzik M, Peters A 2016 Appl. Phys. B 122 217

    [25]

    Fang J, Hu J G, Chen X, Zhu H R, Zhou L, Zhong J Q, Wang J, Zhan M S 2018 Opt. Express 26 1586

    [26]

    Geiger R, Menoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M, Bidel Y, Bresson A, Landragin A, Bouyer P 2011 Nat. Commun. 2 474

    [27]

    Rushton J, Aldous M, Himsworth M 2014 Rev. Sci. Instrum. 85 121501

    [28]

    Merlet S, Bodart Q, Malossi N, Landragin A, Dos Santos F P, Gitlein O, Timmen L 2010 Metrologia 47 9

    [29]

    Louchet-Chauvet A, Merlet S, Bodart Q, Landragin A, Dos Santos F P, Baumann H, D'Agostino G, Origlia C 2011 IEEE Tran. Instrum. Meas. 60 2527

    [30]

    Poli N, Wang F Y, Tarallo M G, Alberti A, Prevedelli M, Tino G M 2011 Phys. Rev. Lett. 106 038501

    [31]

    Gillot P, Francis O, Landragin A, Dos Santos F P, Merlet S 2014 Metrologia 51 L15

    [32]

    Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H G, Muller J, Peters A 2016 8th Symposium on Frequency Standards and Metrology 2016 Potsdam Germany 012050

    [33]

    Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 043610

    [34]

    Schmidt M, Senger A, Hauth M, Freier C, Schkolnik V, Peters A 2011 Gyroscopy and Navigation 2 170

    [35]

    Louchet-Chauvet A, Farah T, Bodart Q, Clairon A, Landragin A, Merlet S, Pereira Dos Santos F 2011 New J. Phys. 13 065025

    [36]

    Merlet S, Volodimer L, Lours M, Dos Santos F P 2014 Appl. Phys. B 117 749

  • [1] 文艺, 伍康, 王力军. 绝对重力测量中振动传感器振动补偿性能的分析. 物理学报, 2022, 71(4): 049101. doi: 10.7498/aps.71.20211686
    [2] 张苏钊, 孙雯君, 董猛, 武海斌, 李睿, 张雪姣, 张静怡, 成永军. 基于磁光阱中6Li冷原子的真空度测量. 物理学报, 2022, 71(9): 094204. doi: 10.7498/aps.71.20212204
    [3] 朱栋, 徐晗, 周寅, 吴彬, 程冰, 王凯楠, 陈佩军, 高世腾, 翁堪兴, 王河林, 彭树萍, 乔中坤, 王肖隆, 林强. 基于扩展卡尔曼滤波算法的船载绝对重力测量数据处理. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220071
    [4] 程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于冷原子重力仪的绝对重力动态移动测量实验. 物理学报, 2022, 71(2): 026701. doi: 10.7498/aps.71.20211449
    [5] 文艺, 伍康, 王力军. 绝对重力测量中振动传感器振动补偿性能的分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211686
    [6] 程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 船载系泊状态下基于原子重力仪的绝对重力测量. 物理学报, 2021, 70(4): 040304. doi: 10.7498/aps.70.20201522
    [7] 程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于冷原子重力仪的绝对重力动态移动测量实验研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211449
    [8] 吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强. 基于原子重力仪的车载静态绝对重力测量. 物理学报, 2020, 69(6): 060302. doi: 10.7498/aps.69.20191765
    [9] 何天琛, 李吉. 利用Kapitza-Dirac脉冲操控简谐势阱中冷原子测量重力加速度. 物理学报, 2019, 68(20): 203701. doi: 10.7498/aps.68.20190749
    [10] 陈斌, 龙金宝, 谢宏泰, 陈泺侃, 陈帅. 可移动三维主动减振系统及其在原子干涉重力仪上的应用. 物理学报, 2019, 68(18): 183301. doi: 10.7498/aps.68.20190443
    [11] 吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强. 拉曼激光边带效应对冷原子重力仪测量精度的影响. 物理学报, 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [12] 王谨, 詹明生. 基于原子干涉仪的微观粒子弱等效原理检验. 物理学报, 2018, 67(16): 160402. doi: 10.7498/aps.67.20180621
    [13] 杨威, 孙大立, 周林, 王谨, 詹明生. 用于原子干涉仪实验的锂原子的塞曼减速与磁光囚禁. 物理学报, 2014, 63(15): 153701. doi: 10.7498/aps.63.153701
    [14] 胡华, 伍康, 申磊, 李刚, 王力军. 新型高精度绝对重力仪. 物理学报, 2012, 61(9): 099101. doi: 10.7498/aps.61.099101
    [15] 熊宗元, 姚战伟, 王玲, 李润兵, 王谨, 詹明生. 对抛式冷原子陀螺仪中原子运动轨迹的控制. 物理学报, 2011, 60(11): 113201. doi: 10.7498/aps.60.113201
    [16] 朱常兴, 冯焱颖, 叶雄英, 周兆英, 周永佳, 薛洪波. 利用原子干涉仪的相位调制进行绝对转动测量. 物理学报, 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [17] 江开军, 李 可, 王 谨, 詹明生. Rb原子磁光阱中囚禁原子数目与实验参数的依赖关系. 物理学报, 2006, 55(1): 125-129. doi: 10.7498/aps.55.125
    [18] 唐 霖, 黄建华, 段正路, 张卫平, 周兆英, 冯焱颖, 朱 荣. 冷原子穿越激光束的量子隧穿时间. 物理学报, 2006, 55(12): 6606-6611. doi: 10.7498/aps.55.6606
    [19] 耿 涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民. 用短程飞行时间吸收谱对铯磁光阱中冷原子温度的测量. 物理学报, 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
    [20] 罗有华, 黄整, 王育竹. 冷原子在静电势阱中的量子力学效应. 物理学报, 2002, 51(8): 1706-1710. doi: 10.7498/aps.51.1706
计量
  • 文章访问数:  3891
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-08
  • 修回日期:  2018-07-20
  • 刊出日期:  2018-10-05

大倾斜角度下基于冷原子重力仪的绝对重力测量

  • 1. 浙江工业大学理学院光学与光电子研究中心, 杭州 310023;
  • 2. 浙江大学物理学系光学研究所, 杭州 310027
  • 通信作者: 林强, qlin@zju.edu.cn
    基金项目: 国家重点研发计划(批准号:2017YFC0601602,2016YFF0200206)和国家自然科学基金(批准号:61727821,61475139,61478069,11604296,11404286)资助的课题.

摘要: 冷原子重力仪的倾斜角会对绝对重力测量产生显著的影响.高精度的绝对重力测量需要对重力仪的倾斜角进行精确的测量、控制及校正.本文从理论上分析了四种不同情况下倾斜对绝对重力测量的影响规律,并在实验上对得到的理论进行了实验验证.基于此,设计了一种基于双倾斜计的绝对重力测量方案,主要是为了解决恶劣测量环境下的冷原子重力仪倾斜漂移问题.此方案利用高精度倾斜计记录放置在被动隔振平台上的拉曼反射镜的倾斜角度,并使用另外一个倾斜计监控真空系统的倾斜,以实现振动噪声的抑制和倾斜的高精度测量.基于自研的小型化冷原子重力仪,对该方案进行了实验验证,并最终实现了车间复杂环境下的高精度绝对重力测量.由于倾斜得到精确测量和补偿,冷原子重力仪的测量精度达到了12.3 μGal.本文为复杂环境下的高精度绝对重力测量提供了一种可行的方案,为冷原子重力仪的实用化提供了参考数据.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回