搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于冷原子重力仪的船载动态绝对重力测量实验研究

车浩 李安 方杰 葛贵国 高伟 张亚 刘超 许江宁 常路宾 黄春福 龚文斌 李冬毅 陈曦 覃方君

引用本文:
Citation:

基于冷原子重力仪的船载动态绝对重力测量实验研究

车浩, 李安, 方杰, 葛贵国, 高伟, 张亚, 刘超, 许江宁, 常路宾, 黄春福, 龚文斌, 李冬毅, 陈曦, 覃方君

Ship-borne dynamic absolute gravity measurement based on cold atom gravimeter

Che Hao, Li An, Fang Jie, Ge Gui-Guo, Gao Wei, Zhang Ya, Liu Chao, Xu Jiang-Ning, Chang Lu-Bin, Huang Chun-Fu, Gong Wen-Bin, Li Dong-Yi, Chen Xi, Qin Fang-Jun
PDF
HTML
导出引用
  • 冷原子重力仪正逐渐向小型化、动态化、实用化方向发展, 将其应用于深远海绝对重力测量及水下长航时、高精度导航具有十分重要的意义. 而目前冷原子重力仪多数尚处于实验室静基座或准静基座测量状态, 难以满足动态应用场景下的重力测量需求, 因此对冷原子干涉重力测量进行“由静到动”的相关研究十分迫切和关键. 本文分析了动态测量的基本原理, 给出了冷原子重力仪与加速度计组合测量的基本方法, 搭建了一套基于冷原子重力仪和惯性稳定平台绝对动态重力测量系统, 并采用冷原子重力仪与传统加速度计组合测量方式, 开展了船载动态测量实验. 首先, 在实验室静态环境下进行了约40 h的连续绝对重力测量, 对冷原子重力仪的性能进行初步评估, 灵敏度为447 µGal/$\sqrt {{\text{Hz}}} $(1 Gal = 1 cm/s2), 长期稳定度可达2.7 µGal. 在此基础上开展船载实验, 测量船在湖上以约4.6 kn的速度航行, 采用重复测线的方式开展了船载绝对动态重力测量. 经评估, 四条重复测线的内符合精度为2.272 mGal, 四个航次外符合精度分别为2.331, 1.837, 3.988和2.589 mGal. 最后, 针对实验结果, 对可能存在的问题进行进一步分析与总结. 本实验研究为海洋绝对重力动态测量提供了前期验证与技术方案参考.
    Cold atom gravimeter is gradually developing towards miniaturization, dynamics and practicality. It is of great significance to apply it to deep and far sea absolute gravity measurement and underwater long navigation time and high-precision navigation. At present, most cold atom gravimeters are still in the state of laboratory static base or quasi-static base measurement, which is difficult to meet the gravity measurement needs in dynamic application scenarios. Therefore, the research on "static to dynamic" of cold atom interferometric gravity measurement is very urgent and key. In this paper, the basic principle of dynamic measurement is analyzed, the basic method of combined measurement of cold atom gravimeter and accelerometer is given, a set of absolute dynamic gravity measurement system based on cold atom gravimeter and inertial stabilization platform is built, and the ship-borne dynamic measurement experiment is carried out by using the combined measurement method of cold atom gravimeter and traditional accelerometer. Firstly, the continuous absolute gravity measurement for about 40 h is carried out in the laboratory static environment to preliminarily evaluate the performance of the cold atom gravimeter. The sensitivity is 447 µGal/$\sqrt {{\text{Hz}}} $, and the long-term stability can reach 2.7 µgal. On this basis, the ship-borne experiment is conducted, the survey ship sails on the lake at a speed of about 4.6 kn, and the ship-borne absolute dynamic gravity measurement is carried out by means of repeated survey lines. After evaluation, the internal coincidence accuracy of the four repeated survey lines is 2.272 mGal, and the external coincidence accuracy values of the four voyages are 2.331, 1.837, 3.988 and 2.589 mGal respectively. Finally, according to the experimental results, the possible problems are further analyzed and summarized. This experimental study provides preliminary verification and technical scheme reference for marine absolute dynamic gravity measurement.
      通信作者: 方杰, fangjie@apm.ac.cn ; 陈曦, chenxi@wipm.ac.cn ; 覃方君, haig2005@126.com
    • 基金项目: 国家自然科学基金(批准号: 42074010, 61873275)和中国博士后科学基金(批准号: 2020M672453)资助的课题.
      Corresponding author: Fang Jie, fangjie@apm.ac.cn ; Chen Xi, chenxi@wipm.ac.cn ; Qin Fang-Jun, haig2005@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 42074010, 61873275) and the China Postdoctoral Science Foundation (Grant No. 2020M672453).
    [1]

    Bongs K, Holynski M, Vovrosh J, Bouyer P, Condon G, Rasel E, Schubert C, Schleich W P, Roura A 2019 Nat. Rev. Phys. 1 731Google Scholar

    [2]

    房丰洲, 顾春阳 2017 仪器仪表学报 38 081830

    Fang F Z, Gu C Y 2017 Chin. J. Sci. Instrum. 38 081830

    [3]

    李安, 车浩, 覃方君, 黄春福, 龚文斌 2021 海军工程大学学报 33 0601

    Li A, Che H, Qin F J, Huang C F, Gong W B 2021 J. Nav. Univ. Eng. 33 0601

    [4]

    Geiger R, Landragin A, Merlet S, Santos F P D 2020 AVS Quantum Sci. 2 024702Google Scholar

    [5]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [6]

    Schmidt M, Prevedelli M, Giorgini A, Tino G M, Peters A 2011 Appl. Phys. B 102 11Google Scholar

    [7]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107Google Scholar

    [8]

    Wu X J, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Muller H 2019 Sci. Adv. 5 eaax0800Google Scholar

    [9]

    Zhang J Y, Chen L L, Cheng Y, Luo Q, Shu Y B, Duan X C, Zhou M K, Hu Z K 2020 Chin. Phys. B 29 093702Google Scholar

    [10]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 9Google Scholar

    [11]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geod. 94 2Google Scholar

    [12]

    Zhang J Y, Xu W J, Sun S D, Shu Y B, Luo Q, Cheng Y, Hu Z K, Zhou M K 2021 AIP Adv. 11 115223Google Scholar

    [13]

    吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 物理学报 69 060302Google Scholar

    Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin. 69 060302Google Scholar

    [14]

    程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2021 物理学报 70 040304Google Scholar

    Cheng B, Zhou Y, Chen P J, Zhang K J, Zhu D, Wang K N, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2021 Acta Phys. Sin. 70 040304Google Scholar

    [15]

    程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2022 物理学报 71 026701Google Scholar

    Cheng B, Chen P J, Zhou Y, Wang K N, Zhu D, Chu li, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2022 Acta Phys. Sin. 71 026701Google Scholar

    [16]

    Le Gouët J, Mehlstaubler T E, Kim J, Merlet S, Clairon A, Landragin A, Dos Santos F P 2008 Appl. Phys. B 92 133Google Scholar

    [17]

    Cheinet P, Canuel B, Pereira D S F, Gauguet A, Leduc F, Landragin A 2008 IEEE Trans. Instrum. Meas. 57 1141Google Scholar

    [18]

    Tang B, Zhou L, Xiong Z Y, Wang Jin, Zhan M S A 2014 Rev. Sci. Instrum. 85 123Google Scholar

    [19]

    Rakholia A V 2015 Ph. D. Dissertation (New Mexico: The University of New Mexico)

    [20]

    Merlet S, Le Gouët J, Bodart Q, Clairon A, Rouchon P 2009 Metrologia 46 87Google Scholar

    [21]

    罗东云, 程冰, 周寅, 吴彬, 王肖隆, 林强 2018 物理学报 67 020702Google Scholar

    Luo D Y, Cheng B, Zhou Y, Wu B, Wang X L, Lin Q 2018 Acta Phys. Sin. 67 020702Google Scholar

    [22]

    Cheiney P, Fouche L, Templier S, Napolitano F, Battelier B, Bouyer P, Barrett B 2018 Phys. Rev. Appl. 10 034030Google Scholar

    [23]

    Cheiney P, Barrett B, Templier S, Jolly O, Napolitano F 2019 IEEE International Symposium on Inertial Sensors and Systems(INERTIAL) Naples FL, USA, April 1–5, 2019 p1

    [24]

    Fang J, Hu J G, Chen X, Zhu H R, Zhou L, Zhong J Q, Wang J, Zhan M S 2018 Opt. Express 26 1586Google Scholar

  • 图 1  冷原子重力仪/加速度计组合测量原理示意图

    Fig. 1.  Principal of combined measurement of cold atom gravimeter/accelerometer.

    图 2  实验装置及航迹 (a) 冷原子重力仪与dgShip型重力仪; (b) CG-5型重力仪; (c)实验测量船; (d)计划航线

    Fig. 2.  Experimental device and route: (a) Cold atom gravimeter and dgShip gravimeter; (b) CG-5 gravimeter; (c) experimental measuring ship; (d) planned route.

    图 3  实验流程

    Fig. 3.  Procedure of experiment.

    图 4  实验室静基座测量结果 (a) 重力测量值; (b) Allan方差

    Fig. 4.  Laboratory static measurement: (a) Gravity measurements; (b) Allan variance.

    图 5  运动参数 (a) 航行轨迹; (b) 载体高度; (c) 航行速度; (d) 载体航向

    Fig. 5.  Motion parameters: (a) Trajectory; (b) height; (c) velocity; (d) heading.

    图 6  绝对重力测量数据 (a) 原始数据; (b) 低通滤波后; (c) Eötvös校正后

    Fig. 6.  Absolute gravimetry data: (a) Raw data; (b) low pass filtered; (c) Eötvös corrected.

    图 7  干涉条纹 (a) 补偿前条纹(正啁啾); (b) 补偿后条纹(正啁啾); (c) 补偿前条纹(负啁啾); (d) 补偿后条纹(负啁啾)

    Fig. 7.  Interference fringes: (a) Before compensation(positive chirp); (b) after compensation (positive chirp); (c) before compensation(negative chirp); (d) after compensation(negative chirp).

    表 1  实验系统主要硬件设备及功能

    Table 1.  Main hardware equipment and functions of the experimental system.

    类别名称规格功能
    重力仪及
    配套装置
    冷原子重力仪1套绝对重力测量
    dgShip型重力仪1套高精度动态相对重力测量, 提供动态重力基准比对
    CG-5型重力仪1台高精度静态相对重力测量, 提供静态重力基准参考
    笔记本电脑1台冷原子重力仪数据采集与处理
    传统加速度计1支置于拉曼光反射镜下, 与冷原子重力仪进行组合测量
    惯性稳定平台
    及配套装置
    双轴惯性稳定平台1套提供稳定的水平基准和姿态信息, 保持冷原子重力仪系统稳定的垂直指向
    高精度惯性导航系统1套与GPS组合测量, 获取航行过程中的速度、位置、姿态等信息
    差分GPS装置1套获取载体位置信息, 与惯性稳定平台组合
    减振装置1套置于稳定平台底部, 减少稳定平台的振动
    电源系统1套为实验设备供电
    下载: 导出CSV
  • [1]

    Bongs K, Holynski M, Vovrosh J, Bouyer P, Condon G, Rasel E, Schubert C, Schleich W P, Roura A 2019 Nat. Rev. Phys. 1 731Google Scholar

    [2]

    房丰洲, 顾春阳 2017 仪器仪表学报 38 081830

    Fang F Z, Gu C Y 2017 Chin. J. Sci. Instrum. 38 081830

    [3]

    李安, 车浩, 覃方君, 黄春福, 龚文斌 2021 海军工程大学学报 33 0601

    Li A, Che H, Qin F J, Huang C F, Gong W B 2021 J. Nav. Univ. Eng. 33 0601

    [4]

    Geiger R, Landragin A, Merlet S, Santos F P D 2020 AVS Quantum Sci. 2 024702Google Scholar

    [5]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [6]

    Schmidt M, Prevedelli M, Giorgini A, Tino G M, Peters A 2011 Appl. Phys. B 102 11Google Scholar

    [7]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107Google Scholar

    [8]

    Wu X J, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Muller H 2019 Sci. Adv. 5 eaax0800Google Scholar

    [9]

    Zhang J Y, Chen L L, Cheng Y, Luo Q, Shu Y B, Duan X C, Zhou M K, Hu Z K 2020 Chin. Phys. B 29 093702Google Scholar

    [10]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 9Google Scholar

    [11]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geod. 94 2Google Scholar

    [12]

    Zhang J Y, Xu W J, Sun S D, Shu Y B, Luo Q, Cheng Y, Hu Z K, Zhou M K 2021 AIP Adv. 11 115223Google Scholar

    [13]

    吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 物理学报 69 060302Google Scholar

    Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin. 69 060302Google Scholar

    [14]

    程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2021 物理学报 70 040304Google Scholar

    Cheng B, Zhou Y, Chen P J, Zhang K J, Zhu D, Wang K N, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2021 Acta Phys. Sin. 70 040304Google Scholar

    [15]

    程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2022 物理学报 71 026701Google Scholar

    Cheng B, Chen P J, Zhou Y, Wang K N, Zhu D, Chu li, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2022 Acta Phys. Sin. 71 026701Google Scholar

    [16]

    Le Gouët J, Mehlstaubler T E, Kim J, Merlet S, Clairon A, Landragin A, Dos Santos F P 2008 Appl. Phys. B 92 133Google Scholar

    [17]

    Cheinet P, Canuel B, Pereira D S F, Gauguet A, Leduc F, Landragin A 2008 IEEE Trans. Instrum. Meas. 57 1141Google Scholar

    [18]

    Tang B, Zhou L, Xiong Z Y, Wang Jin, Zhan M S A 2014 Rev. Sci. Instrum. 85 123Google Scholar

    [19]

    Rakholia A V 2015 Ph. D. Dissertation (New Mexico: The University of New Mexico)

    [20]

    Merlet S, Le Gouët J, Bodart Q, Clairon A, Rouchon P 2009 Metrologia 46 87Google Scholar

    [21]

    罗东云, 程冰, 周寅, 吴彬, 王肖隆, 林强 2018 物理学报 67 020702Google Scholar

    Luo D Y, Cheng B, Zhou Y, Wu B, Wang X L, Lin Q 2018 Acta Phys. Sin. 67 020702Google Scholar

    [22]

    Cheiney P, Fouche L, Templier S, Napolitano F, Battelier B, Bouyer P, Barrett B 2018 Phys. Rev. Appl. 10 034030Google Scholar

    [23]

    Cheiney P, Barrett B, Templier S, Jolly O, Napolitano F 2019 IEEE International Symposium on Inertial Sensors and Systems(INERTIAL) Naples FL, USA, April 1–5, 2019 p1

    [24]

    Fang J, Hu J G, Chen X, Zhu H R, Zhou L, Zhong J Q, Wang J, Zhan M S 2018 Opt. Express 26 1586Google Scholar

  • [1] 叶留贤, 许云鹏, 王巧薇, 程冰, 吴彬, 王河林, 林强. 基于激光双边带抑制的冷原子干涉相移优化与控制. 物理学报, 2023, 72(2): 024204. doi: 10.7498/aps.72.20221711
    [2] 要佳敏, 庄伟, 冯金扬, 王启宇, 赵阳, 王少凯, 吴书清, 李天初. 基于系数搜索的振动补偿方法. 物理学报, 2022, 71(11): 119101. doi: 10.7498/aps.71.20220037
    [3] 王凯楠, 徐晗, 周寅, 许云鹏, 宋微, 汤鸿志, 王巧薇, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 程冰, 李德钊, 乔中坤, 吴彬, 林强. 基于车载原子重力仪的外场绝对重力快速测绘研究. 物理学报, 2022, 71(15): 159101. doi: 10.7498/aps.71.20220267
    [4] 程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于冷原子重力仪的绝对重力动态移动测量实验. 物理学报, 2022, 71(2): 026701. doi: 10.7498/aps.71.20211449
    [5] 程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 船载系泊状态下基于原子重力仪的绝对重力测量. 物理学报, 2021, 70(4): 040304. doi: 10.7498/aps.70.20201522
    [6] 程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于冷原子重力仪的绝对重力动态移动测量实验研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211449
    [7] 吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强. 基于原子重力仪的车载静态绝对重力测量. 物理学报, 2020, 69(6): 060302. doi: 10.7498/aps.69.20191765
    [8] 何天琛, 李吉. 利用Kapitza-Dirac脉冲操控简谐势阱中冷原子测量重力加速度. 物理学报, 2019, 68(20): 203701. doi: 10.7498/aps.68.20190749
    [9] 陈斌, 龙金宝, 谢宏泰, 陈泺侃, 陈帅. 可移动三维主动减振系统及其在原子干涉重力仪上的应用. 物理学报, 2019, 68(18): 183301. doi: 10.7498/aps.68.20190443
    [10] 吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强. 拉曼激光边带效应对冷原子重力仪测量精度的影响. 物理学报, 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [11] 罗东云, 程冰, 周寅, 吴彬, 王肖隆, 林强. 基于滑模鲁棒算法的超低频主动隔振系统. 物理学报, 2018, 67(2): 020702. doi: 10.7498/aps.67.20171884
    [12] 吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强. 大倾斜角度下基于冷原子重力仪的绝对重力测量. 物理学报, 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [13] 黄馨瑶, 项玉, 孙风潇, 何琼毅, 龚旗煌. 平面自旋压缩态的产生与原子干涉的机理. 物理学报, 2015, 64(16): 160304. doi: 10.7498/aps.64.160304
    [14] 杨威, 孙大立, 周林, 王谨, 詹明生. 用于原子干涉仪实验的锂原子的塞曼减速与磁光囚禁. 物理学报, 2014, 63(15): 153701. doi: 10.7498/aps.63.153701
    [15] 胡华, 伍康, 申磊, 李刚, 王力军. 新型高精度绝对重力仪. 物理学报, 2012, 61(9): 099101. doi: 10.7498/aps.61.099101
    [16] 冯志刚, 张好, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷铯Rydberg原子寿命的测量. 物理学报, 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [17] 任利春, 周林, 李润兵, 刘敏, 王谨, 詹明生. 不同序列拉曼光脉冲对原子重力仪灵敏度的影响. 物理学报, 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [18] 朱常兴, 冯焱颖, 叶雄英, 周兆英, 周永佳, 薛洪波. 利用原子干涉仪的相位调制进行绝对转动测量. 物理学报, 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [19] 郑森林, 陈 君, 林 强. 光脉冲序列对三能级原子重力仪测量精度的影响. 物理学报, 2005, 54(8): 3535-3541. doi: 10.7498/aps.54.3535
    [20] 徐信业, 王育竹. 多普勒型原子干涉仪的理论探讨. 物理学报, 1997, 46(6): 1062-1072. doi: 10.7498/aps.46.1062
计量
  • 文章访问数:  6588
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-16
  • 修回日期:  2022-02-20
  • 上网日期:  2022-03-04
  • 刊出日期:  2022-06-05

/

返回文章
返回