搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种面向原子干涉仪均匀量子非破坏测量的光学环形腔

王恩龙 王国超 朱凌晓 卞进田 莫小娟 孔辉

引用本文:
Citation:

一种面向原子干涉仪均匀量子非破坏测量的光学环形腔

王恩龙, 王国超, 朱凌晓, 卞进田, 莫小娟, 孔辉

Optical ring cavity for homogeneous quantum nondemolition measurement in atom interferometer

Wang En-long, Wang Guo-chao, Zhu Ling-Xiao, Bian Jin-Tian, Mo Xiao-Juan, Kong Hui
PDF
导出引用
  • 高精细度光学谐振腔辅助的量子非破坏(Quantum nondemolition,QND)测量可产生原子自旋/动量压缩态,是提升原子干涉灵敏度以突破标准量子极限的重要手段.传统Fabry-Perot腔内驻波场结构导致的光与原子相互作用不均匀性,使得原子自旋压缩度在演化过程中逐渐衰退.本文研究一种面向原子干涉仪均匀QND测量的光学环形腔,分析环形腔内行波场结构对光与原子相互作用均匀性的影响,设计并研制了高精细度(F=2.4(1)×104)高真空兼容型光学环形腔,并测试了环形腔特性.在此基础上,制备88Sr冷原子系综并与环形腔模式耦合,通过环形腔差分测量方式提取原子经过腔模过程中对环形腔造成的色散相移,实现对原子数目的非破坏测量.实验结果表明在探测光功率为20 µW条件下,测得环形腔色散相移为40 mrad,耦合进腔内原子数目约为1×106.调节原子与腔模位置匹配及探测光失谐量等参数,验证了环形腔色散相移与QND测量理论的一致性.本文研制的光学环形腔为原子干涉仪中自旋/动量压缩态的产生提供重要解决途径,有望进一步提升原子干涉灵敏度,并广泛应用于腔增强型量子精密测量中。
    Quantum nondemolition (QND) measurement aided by high-finesse optical cavities is an important method for generating high-gain spin or momentum squeezed states, which can enhance the sensitivity of atom interferometers to surpass the standard quantum limit. Conventional two-mirror Fabry-Perot cavities have the drawback of a standing wave pattern, leading to inhomogeneous atom-light coupling and subsequent degradation of squeezing enhancement. In this study, we present a novel method for achieving homogeneous quantum nondemolition measurement using an optical ring cavity to generate momentum squeezed states in atom interferometers. We designed and demonstrated a high-finesse (F =2.4(1)×104), high-vacuum compatible (1×10-10 mbar) optical ring cavity that utilizes the properties of traveling wave fields to address the issue of inhomogeneous atom-light interaction. A strontium cold atomic ensemble was prepared and coupled into the cavity mode; the dispersive cavity phase shift caused by the atoms passing through was extracted through differential Pound-Drever-Hall measurement, enabling nondemolition measurement of the atom number. Experimental results indicate that, under a probe laser power of 20 µW, the dispersive phase shift of the ring cavity was measured to be 40 mrad. The effective number of atoms coupled into the cavity mode is around 1×106. Verification of the consistency between the ring cavity dispersive phase shift and QND measurement theory was achieved by adjusting parameters such as matching the atomic position with the cavity mode and tuning the frequency of the probe laser. The optical ring cavity developed in this study provides a significant approach for generating spin or momentum squeezed states in atom interferometers, thus holding promise for enhancing their sensitivity and is expected to find wide applications in cavity-enhanced quantum precision measurements.
  • [1]

    Pezzè L, Smerzi A, Oberthaler M K, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90035005

    [2]

    Lu B, Han C Y, Zhuang M, Ke Y G, Huang J H, Lee C H 2019 Acta Phys. Sin. 68040306(in Chinses) [鹿博, 韩成银, 庄敏, 柯勇贯, 黄嘉豪, 李朝红2019物理学报68040306]

    [3]

    Leroux I D, Schleier-Smith M H, Vuletić V 2010 Phys. Rev. Lett. 104250801

    [4]

    Hosten O, Engelsen N J, Krishnakumar R, Kasevich M A 2016 Nature 529505

    [5]

    Pedrozo-Peñafiel E, Colombo S, Shu C, Adiyatullin A F, Li Z, Mendez E, Braverman B, Kawasaki A, Akamatsu D, Xiao Y, Vuletić V 2020 Nature 588414

    [6]

    Eckner W J, Darkwah Oppong N, Cao A, Young A W, Milner W R, Robinson J M, Ye J, Kaufman A M 2023 Nature 621734

    [7]

    Greve G P, Luo C, Wu B, Thompson J K 2022 Nature 610472

    [8]

    Huang X Y, Xiang Y, Sun F X, He Q Y, Gong Q H 2015 Acta Phys. Sin. 64160304(in Chinses) [黄馨瑶, 项玉, 孙风潇, 何琼毅, 龚旗煌2015物理学报64160304]

    [9]

    Bao H, Duan J, Jin S, Lu X, Li P, Qu W, Wang M, Novikova I, Mikhailov E E, Zhao K F, Mølmer K, Shen H, Xiao Y 2020 Nature 581159

    [10]

    Bornet G, Emperauger G, Chen C, Ye B, Block M, Bintz M, Boyd J A, Barredo D, Comparin T, Mezzacapo F, Roscilde T, Lahaye T, Yao N Y, Browaeys A 2023 Nature 621728

    [11]

    Malia B K, Wu Y, Martínez-Rincón J, Kasevich M A 2022 Nature 612661

    [12]

    Wang E L, Wang G C, Zhu L X, Bian J T, Wang X, Kong H 2024 Laser Optoelectron. Prog. 61050001(in Chinses) [王恩龙, 王国超, 朱凌晓, 卞进田, 王玺, 孔辉2024激光与光电子学进展61050001]

    [13]

    Wineland D J, Bollinger J J, Itano W M, Heinzen D J 1994 Phys. Rev. A 5067

    [14]

    Louchet-Chauvet A, Appel J, Renema J J, Oblak D, Kjaergaard N, Polzik E S 2010 New J. Phys. 12065032

    [15]

    Bowden W, Vianello A, Hill I R, Schioppo M, Hobson R 2020 Phys. Rev. X 10041052

    [16]

    Muniz J A, Young D J, Cline J R, Thompson J K 2021 Phys. Rev. Res. 3023152

    [17]

    Cox K C, Greve G P, Wu B, Thompson J K 2016 Phys. Rev. A 94061601

    [18]

    Salvi L, Poli N, Vuletić V, Tino G M 2018 Phys. Rev. Lett. 120033601

    [19]

    Tino G M 2021 Quantum Sci. Technol. 6024014

    [20]

    Cox K C, Meyer D H, Schine N A, Fatemi F K, Kunz P D 2018 J. Phys. B: At. Mol. Opt. Phys. 51195002

    [21]

    Kawasaki A, Braverman B, Pedrozo-Peñafiel E, Shu C, Colombo S, Li Z, Özel Ö, Chen W, Salvi L, Heinz A, Levonian D, Akamatsu D, Xiao Y, Vuletić V 2019 Phys. Rev. A 99013437

    [22]

    Braverman B, Kawasaki A, Pedrozo-Peñafiel E, Colombo S, Shu C, Li Z, Mendez E, Yamoah M, Salvi L, Akamatsu D, Xiao Y, Vuletić V 2019 Phys. Rev. Lett. 122223203

    [23]

    Chen Y T, Szurek M, Hu B, de Hond J, Braverman B, Vuletić V 2022 Opt. Express 3037426

    [24]

    Manzoor S, Tinsley J N, Bandarupally S, Chiarotti M, Poli N 2022 Opt. Lett. 472582

    [25]

    Heinz A, Trautmann J, Šantić N, Park A J, Bloch I, Blatt S 2021 Opt. Lett. 46250

    [26]

    Zhang L, Wu M, Gao J, Liu J, Fan L, Jiao D, Xu G, Dong R, Liu T, Zhang S 2023 Appl. Phys. B 129149

    [27]

    Jiang H F 2018 Acta Phys. Sin. 67160602(in Chinses) [姜海峰2018物理学报67160602]

    [28]

    Bowden W, Hobson R, Hill I R, Vianello A, Schioppo M, Silva A, Margolis H S, Baird P E, Gill P 2019 Sci. Rep. 911704

    [29]

    Bernon S, Vanderbruggen T, Kohlhaas R, Bertoldi A, Landragin A, Bouyer P 2011 New J. Phys. 13065021

    [30]

    Chen Z, Bohnet J G, Weiner J M, Cox K C, Thompson J K 2014 Phys. Rev. A 89043837

    [31]

    Tanji-Suzuki H, Leroux I D, Schleier-Smith M H, Cetina M, Grier A T, Simon J, Vuletić V 2011 In Advances In Atomic, Molecular, and Optical Physics, vol. 60(Elsevier), pp 201–237

    [32]

    Kogelnik H, Li T 1966 Appl. Opt. 51550

    [33]

    Carstens H, Holzberger S, Kaster J, Weitenberg J, Pervak V, Apolonski A, Fill E, Krausz F, Pupeza I 2013 Opt. Express 2111606

    [34]

    Black E D 2001 Am. J. Phys. 6979

    [35]

    Wang E, Verma G, Tinsley J N, Poli N, Salvi L 2021 Phys. Rev. A 103022609

    [36]

    Sun Y L, Ye Y X, Shi X H, Wang Z Y, Yan C J, He L L, Lu Z H, Zhang J 2019 Class. Quantum Gravity 36105007

    [37]

    Serra E, Borrielli A, Cataliotti F S, Marin F, Marino F, Pontin A, Prodi G A, Bonaldi M 2012 Phys. Rev. A 86051801

    [38]

    Verma G, Wang E, Assendelft J, Poli N, Rosi G, Tino G M, Salvi L 2022 Appl. Phys. B 1281

    [39]

    Han J X, Lu B Q, Yin M J, Wang Y B, Xu Q F, Lu X T, Chang H 2019 Chin. Phys. B 28013701

  • [1] 彭淑平, 邓淑玲, 刘乾, 董丞骐, 范志强. N, B原子取代调控M-OPE分子器件的量子干涉与自旋输运. 物理学报, doi: 10.7498/aps.73.20240174
    [2] 叶留贤, 许云鹏, 王巧薇, 程冰, 吴彬, 王河林, 林强. 基于激光双边带抑制的冷原子干涉相移优化与控制. 物理学报, doi: 10.7498/aps.72.20221711
    [3] 要佳敏, 庄伟, 冯金扬, 王启宇, 赵阳, 王少凯, 吴书清, 李天初. 基于系数搜索的振动补偿方法. 物理学报, doi: 10.7498/aps.71.20220037
    [4] 王凯楠, 徐晗, 周寅, 许云鹏, 宋微, 汤鸿志, 王巧薇, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 程冰, 李德钊, 乔中坤, 吴彬, 林强. 基于车载原子重力仪的外场绝对重力快速测绘研究. 物理学报, doi: 10.7498/aps.71.20220267
    [5] 车浩, 李安, 方杰, 葛贵国, 高伟, 张亚, 刘超, 许江宁, 常路宾, 黄春福, 龚文斌, 李冬毅, 陈曦, 覃方君. 基于冷原子重力仪的船载动态绝对重力测量实验研究. 物理学报, doi: 10.7498/aps.71.20220113
    [6] 马腾飞, 王敏杰, 王圣智, 焦浩乐, 谢燕, 李淑静, 徐忠孝, 王海. 光学腔增强Duan-Lukin-Cirac-Zoller量子记忆读出效率的研究. 物理学报, doi: 10.7498/aps.71.20210881
    [7] 马腾飞, 王敏杰, 王圣智, 谢燕, 焦浩乐, 李淑静, 徐忠孝, 王海. 光学腔增强Duan-Lukin-Cirac-Zoller量子记忆读出效率的实验研究. 物理学报, doi: 10.7498/aps.70.20210881
    [8] 戴雨菲, 陈垚彤, 王岚, 银恺, 张岩. 三模腔-原子闭环系统中可控的量子干涉和光子传输. 物理学报, doi: 10.7498/aps.69.20200184
    [9] 周静, 王鸣, 倪海彬, 马鑫. 环形狭缝腔阵列光学特性的研究. 物理学报, doi: 10.7498/aps.64.227301
    [10] 黄馨瑶, 项玉, 孙风潇, 何琼毅, 龚旗煌. 平面自旋压缩态的产生与原子干涉的机理. 物理学报, doi: 10.7498/aps.64.160304
    [11] 常锋, 王晓茜, 盖永杰, 严冬, 宋立军. 光与物质相互作用系统中的量子Fisher信息和自旋压缩. 物理学报, doi: 10.7498/aps.63.170302
    [12] 李悦科, 张桂明, 高云峰. 非简并双光子Jaynes-Cummings模型腔场谱中的量子干涉. 物理学报, doi: 10.7498/aps.59.1786
    [13] 严冬, 宋立军, 陈殿伟. 两分量玻色-爱因斯坦凝聚系统的自旋压缩. 物理学报, doi: 10.7498/aps.58.3679
    [14] 姚春梅, 郭光灿. 压缩相干态腔场的类自旋GHZ态的制备. 物理学报, doi: 10.7498/aps.50.59
    [15] 宋克慧, 郭光灿. 利用原子干涉方法实现三模腔场的类自旋GHZ态. 物理学报, doi: 10.7498/aps.49.231
    [16] 王丹翎, 龚旗煌, 汪凯戈, 杨国健. 光学简并参量振荡中的量子非破坏性测量. 物理学报, doi: 10.7498/aps.49.1484
    [17] 张俊香, 贺凌翔, 张天才, 谢常德, 彭昆墀. 压缩态光场的四阶量子干涉. 物理学报, doi: 10.7498/aps.48.1230
    [18] 汪凯戈, 许秋生, 杨国建. 非线性双光束共振时的量子非破坏测量. 物理学报, doi: 10.7498/aps.47.1641
    [19] 薛秋寒, 郭光灿. 损耗与噪声对分束器的量子非破坏性测量的影响. 物理学报, doi: 10.7498/aps.44.1410
    [20] 赛·萨楚尔夫, 胡岗. 劣腔情况失谐双光子光学双稳系统的原子压缩效应. 物理学报, doi: 10.7498/aps.41.578
计量
  • 文章访问数:  10
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-19

/

返回文章
返回