搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于激光双边带抑制的冷原子干涉相移优化与控制

叶留贤 许云鹏 王巧薇 程冰 吴彬 王河林 林强

引用本文:
Citation:

基于激光双边带抑制的冷原子干涉相移优化与控制

叶留贤, 许云鹏, 王巧薇, 程冰, 吴彬, 王河林, 林强

Optimization and control of cold atom interference phase shift based on laser double-sideband suppression

Ye Liu-Xian, Xu Yun-Peng, Wang Qiao-Wei, Cheng Bing, Wu Bin, Wang He-Lin, Lin Qiang
PDF
HTML
导出引用
  • 采用电光调制技术产生冷原子干涉所需要的拉曼光, 虽然可以使激光系统更加紧凑和稳定, 但其产生的残余边带会引入附加干涉相移, 从而影响冷原子干涉测量精度. 为了降低激光调制边带对冷原子干涉相移的影响, 构建了一种用于冷原子干涉的双边带抑制激光系统. 基于该系统, 详细分析了激光双边带的产生原理和双边带抑制效果; 研究了当残余边带存在时, 拉曼反射镜的初始位置、相邻拉曼脉冲的间隔时间、调制深度和原子团初速度等一系列参数与冷原子干涉相移之间的关系, 并优化相关参数, 降低了残余边带对冷原子干涉相移的影响. 当拉曼反射镜与冷原子团之间的距离为105 mm, 相邻拉曼脉冲的间隔时间为82 ms时, 相移可以优化到0.7 mrad. 该研究结果为减小拉曼边带效应对冷原子干涉相移的影响提供了一个思路, 相应的激光系统可用于其他惯性传感器, 如原子重力仪或原子重力梯度仪等.
    Using the electro-optical modulation method to generate Raman beams for cold atom interference is one of the better methods for constructing a more compact and robust laser system. But this way will generate some residual sidebands resulting in the additional interference phase shift, which can affect the measurement accuracy of cold atom interferometer. In order to weaken the effect of laser modulation sidebands on the phase shift of cold atom interference, a double-sideband suppressed-carrier modulation laser system for cold atom interference is constructed. Based on the designed laser system, the principle of double-sideband generation and suppression is analyzed in detail, and some residual sidebands are adjusted and controlled. Moreover, some important optical parameters that affect the phase shift of cold atomic interference, such as the initial distance between the Raman retro-reflection mirror and the atomic cloud, the interrogation time between two adjacent Raman pulses, the laser modulation depth and the initial velocity of the atomic cloud, are discussed and optimized. By optimizing these relevant parameters, the influence of residual modulation sidebands on the phase shift of cold atomic interference is weakened drastically. The research results indicate, making use of the method of double-sideband suppression, the phase shift of cold atomic interference can be optimized to 0.7 mrad when the initial distance between the Raman retro-reflection mirror and the atomic cloud is 105 mm, and the interrogation time between two adjacent Raman pulses is 82 ms. More importantly, this work can provide a method for weakening the influence of Raman sideband effect on the phase shift of cold atom interferometer, and the corresponding laser system can be applied to other inertial sensors such as atomic gravimeter or atomic gravity gradiometer.
      通信作者: 王河林, whlin@zjut.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFC0601602)资助的课题.
      Corresponding author: Wang He-Lin, whlin@zjut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFC0601602).
    [1]

    Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H G, Müller J, Peters A 2016 J. Phys. Conf. Ser. 723 012050Google Scholar

    [2]

    Hu Q Q, Freier C, Leykauf B, Schkolnik V, Yang J, Krutzik M, Peters A 2017 Phys. Rev. A 96 033414Google Scholar

    [3]

    Wang Y P, Zhong J Q, Song H W, Zhu L, Li Y M, Chen X, Li R, Wang J, Zhan M S 2017 Phys. Rev. A 95 053612Google Scholar

    [4]

    Sorrentino F, Bodart Q, Cacciapuoti L, Lien Y H, Prevedelli M, Rosi G, Salvi L, Tino G M 2014 Phys. Rev. A 89 023607Google Scholar

    [5]

    Dutta I, Savoie D, Fang B, Venon B, Garrido Alzar C L, Geiger R, Landragin A 2016 Phys. Rev. Lett. 116 183003Google Scholar

    [6]

    Kasevich M, Chu S 1991 Phys. Rev. Lett. 67 181Google Scholar

    [7]

    Le Gouët J, Kim J, Bourassin-Bouchet C, Lours M, Landragin A, Pereira Dos Santos F 2009 Opt. Commun. 282 977Google Scholar

    [8]

    Bouyer P, Gustavson T L, Haritos K G, Kasevich M A 1996 Opt. Lett. 21 1502Google Scholar

    [9]

    Kasevich M, Weiss D S, Riis E, Moler K, Kasapi S, Chu S 1991 Phys. Rev. Lett. 66 2297Google Scholar

    [10]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [11]

    Zhang X W, Zhong J Q, Tang B, Chen X, Zhu L, Huang P W, Wang J, Zhan M S 2018 Appl. Opt. 57 6545Google Scholar

    [12]

    Carraz O, Lienhart F, Charrière R, Cadoret M, Zahzam N, Bidel Y, Bresson A 2009 Appl. Phys. B 97 405Google Scholar

    [13]

    Zhu L X, Lien Y H, Hinton A, Niggebaum A, Rammeloo C, Bongs K, Holynski M 2018 Opt. Express 26 6542Google Scholar

    [14]

    Rammeloo C, Zhu L X, Lien Y H, Bongs K, Holynski M 2020 J. Opt. Soc. Am. B 37 1485Google Scholar

    [15]

    Carraz O, Charrière R, Cadoret M, Zahzam N, Bidel Y, Bresson A 2012 Phys. Rev. A 86 033605Google Scholar

    [16]

    吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强 2019 物理学报 68 194205Google Scholar

    Wu B, Cheng B, Fu Z J, Zhu D, Wu L M, Wang K N, Wang H L, Wang Z Y, Wang X L, Lin Q 2019 Acta Phys. Sin. 68 194205Google Scholar

    [17]

    Li W, Pan X, Song N F, Xu X B, Lu X X 2017 Appl. Phys. B 123 54Google Scholar

    [18]

    Wang Q, Qi X H, Liu S Y, Yu J C, Chen X Z 2015 Opt. Express 23 2982Google Scholar

    [19]

    Shimotsu S, Oikawa S, Saitou T, Mitsugi N, Kubodera K, Kawanishi T, Izutsu M 2001 IEEE Photon. Technol. Lett. 13 364Google Scholar

    [20]

    王侠, 韦慕野, 邓东锋, 何锋, 欧阳竑, 余志强, 伍颖, 李文甫, 杨庆锐, 李鹏伟 2021 光电技术应用 36 47Google Scholar

    Wang X, Wei M Y, Deng D F, He F, Ouyang H, Yu Z Q, Wu Y, Li W F, Yang Q R, Li P W 2021 Ele. Optic Technol. Appl. 36 47Google Scholar

    [21]

    Vetsch E, Reitz D, Sague G, Schmidt R, Dawkins S T, Rauschenbeutel A 2010 Phys. Rev. Lett. 104 203603Google Scholar

  • 图 1  用于冷原子干涉的边带抑制激光系统图 PID, 比例-积分-微分; PD, 光电二极管; PPLN, 周期性极化铌酸锂; PBS, 偏振分光棱镜; EDFA, 掺铒光纤放大器; AOM, 电光调制器

    Fig. 1.  Diagram of a sideband suppressed laser system for cold atom interference: PID, proportion integration differentiation; PD, photodiode; PPLN, periodically poled lithium niobate; PBS, polarization beam splitter; EDFA, erbium doped fiber amplifier; AOM, acousto-optic modulator.

    图 2  87Rb D2线能级跃迁图和干涉过程需要的激光频率

    Fig. 2.  Energy level transition diagram of 87Rb D2 line and the laser frequency required for the interference process.

    图 3  自由下落式原子干涉示意图

    Fig. 3.  Schematic diagram of free-fall atomic interference.

    图 4  波长为1560 nm, ΔΦ1 = ΔΦ2 = π时, 不同的ΔΦ3值对激光边带抑制的频谱图 (a) ΔΦ3 = –π/6; (b) ΔΦ3 = –π/3; (c) ΔΦ3 = –π/2; (d) ΔΦ3 = –2π/3; (e) ΔΦ3 = –5π/6; (f) ΔΦ3 = –π

    Fig. 4.  Spectrogram of laser sideband suppression with different ΔΦ3 values when the wavelength is 1560 nm and ΔΦ1 = ΔΦ2 = π: (a) ΔΦ3 = –π/6; (b) ΔΦ3 = –π/3; (c) ΔΦ3 = –π/2; (d) ΔΦ3 = –2π/3; (e) ΔΦ3 = –5π/6; (f) ΔΦ3 = –π.

    图 5  波长为1560 nm, ΔΦ3 = –π/2时, 不同的ΔΦ1和ΔΦ2值对激光边带抑制的频谱图 (a) ΔΦ1, 2 = π/6; (b) ΔΦ1, 2 = π/2; (c) ΔΦ1, 2 = 2π/3; (d) ΔΦ1, 2 = 5π/6; (e) ΔΦ1, 2 = 17π/18; (f) ΔΦ1, 2 = π

    Fig. 5.  Spectrogram of laser sideband suppression with different values of ΔΦ1 and ΔΦ2 when the wavelength is 1560 nm and ΔΦ3 = –π/2: (a) ΔΦ1, 2 = π/6; (b) ΔΦ1, 2 = π/2; (c) ΔΦ1, 2 = 2π/3; (d) ΔΦ1, 2 = 5π/6; (e) ΔΦ1, 2 = 17π/18; (f) ΔΦ1, 2 = π.

    图 6  1560 nm处, 边带抑制的结果

    Fig. 6.  Result of sideband suppression at 1560 nm.

    图 7  780 nm处, 边带抑制的结果

    Fig. 7.  Result of sideband suppression at 780 nm.

    图 8  不同间隔时间T下, 拉曼反射镜距离与相移的变化关系 (β1 = 0.55, β2 = 0.23) (a)T = 10, 20, 30, 50, 80 ms时, 相移随ZM变化的关系; (b)不同T下, 相移随ZM变化的峰峰值Δφpp

    Fig. 8.  Relationship between Raman retro-reflection mirror distance and phase shift at different time intervals T (β1 = 0.55, β2 = 0.23): (a) Relationship of the phase shift with ZM at T = 10, 20, 30, 50, 80 ms; (b) the peak-to-peak value (Δφpp) of the phase shift with ZM at different T

    图 9  T = 82 ms, 两个调制深度β1, β2不同时, 拉曼反射镜距离与原子干涉相移的关系

    Fig. 9.  Relationship between the Raman mirror distance and the atomic interference phase shift when the two modulation depths β1and β2 are different at T = 82 ms.

    图 10  不同的拉曼反射镜距离下, 间隔时间T与原子干涉相移的关系(β1 = 0.55, β2 = 0.23) (a) ZM = 112, 117, 122, 127, 133 mm时, 相移随T变化的关系图; (b)不同ZM下, 相移随T变化的峰峰值Δφpp

    Fig. 10.  Interference time T versus atomic interference phase shift for the different Raman mirror distances (β1 = 0.55, β2 = 0.23): (a) Relationship between the phase shift and T when ZM = 112, 117, 122, 127, 133 mm; (b) the peak-to-peak Δφpp of the phase shift with T at different ZM.

    图 11  相移随原子团初速度υ0的变化关系

    Fig. 11.  Phase shift as a function of the initial velocity υ0 of the atomic group.

    图 12  最终边带抑制和相移结果 (a) 波长为1560 nm时, 激光边带的抑制结果; (b) 波长为780 nm时, 激光边带的抑制结果; (c) T = 82 ms时, 相移与原子团到拉曼反射镜距离的关系; (d) ZM = 105 mm时, 相移与拉曼脉冲间隔时间的关系

    Fig. 12.  Final sideband suppression and phase shift results: (a) Suppression result of the laser sideband when the wavelength is 1560 nm; (b) the suppression result of the laser sideband when the wavelength is 780 nm; (c) the phase shift and the distance from the atomic group to the Raman mirror when T = 82 ms; (d) the relationship between phase shift and Raman pulse interval time at ZM = 105 mm.

    表 1  频率参数

    Table 1.  Frequency parameters.

    相关频率Δf/GHzΔR/GHzδCO/MHzδHF/GHz
    频率值1.50.881336.834
    下载: 导出CSV

    表 2  优化参数

    Table 2.  Optimization parameters.

    参数ΔΦ1 = ΔΦ2ΔΦ3ZM/mmT/msβ1β2t0/msυ0/(mm·s–1)
    优化数据π–π/2105820.620.215–15
    下载: 导出CSV
  • [1]

    Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H G, Müller J, Peters A 2016 J. Phys. Conf. Ser. 723 012050Google Scholar

    [2]

    Hu Q Q, Freier C, Leykauf B, Schkolnik V, Yang J, Krutzik M, Peters A 2017 Phys. Rev. A 96 033414Google Scholar

    [3]

    Wang Y P, Zhong J Q, Song H W, Zhu L, Li Y M, Chen X, Li R, Wang J, Zhan M S 2017 Phys. Rev. A 95 053612Google Scholar

    [4]

    Sorrentino F, Bodart Q, Cacciapuoti L, Lien Y H, Prevedelli M, Rosi G, Salvi L, Tino G M 2014 Phys. Rev. A 89 023607Google Scholar

    [5]

    Dutta I, Savoie D, Fang B, Venon B, Garrido Alzar C L, Geiger R, Landragin A 2016 Phys. Rev. Lett. 116 183003Google Scholar

    [6]

    Kasevich M, Chu S 1991 Phys. Rev. Lett. 67 181Google Scholar

    [7]

    Le Gouët J, Kim J, Bourassin-Bouchet C, Lours M, Landragin A, Pereira Dos Santos F 2009 Opt. Commun. 282 977Google Scholar

    [8]

    Bouyer P, Gustavson T L, Haritos K G, Kasevich M A 1996 Opt. Lett. 21 1502Google Scholar

    [9]

    Kasevich M, Weiss D S, Riis E, Moler K, Kasapi S, Chu S 1991 Phys. Rev. Lett. 66 2297Google Scholar

    [10]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [11]

    Zhang X W, Zhong J Q, Tang B, Chen X, Zhu L, Huang P W, Wang J, Zhan M S 2018 Appl. Opt. 57 6545Google Scholar

    [12]

    Carraz O, Lienhart F, Charrière R, Cadoret M, Zahzam N, Bidel Y, Bresson A 2009 Appl. Phys. B 97 405Google Scholar

    [13]

    Zhu L X, Lien Y H, Hinton A, Niggebaum A, Rammeloo C, Bongs K, Holynski M 2018 Opt. Express 26 6542Google Scholar

    [14]

    Rammeloo C, Zhu L X, Lien Y H, Bongs K, Holynski M 2020 J. Opt. Soc. Am. B 37 1485Google Scholar

    [15]

    Carraz O, Charrière R, Cadoret M, Zahzam N, Bidel Y, Bresson A 2012 Phys. Rev. A 86 033605Google Scholar

    [16]

    吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强 2019 物理学报 68 194205Google Scholar

    Wu B, Cheng B, Fu Z J, Zhu D, Wu L M, Wang K N, Wang H L, Wang Z Y, Wang X L, Lin Q 2019 Acta Phys. Sin. 68 194205Google Scholar

    [17]

    Li W, Pan X, Song N F, Xu X B, Lu X X 2017 Appl. Phys. B 123 54Google Scholar

    [18]

    Wang Q, Qi X H, Liu S Y, Yu J C, Chen X Z 2015 Opt. Express 23 2982Google Scholar

    [19]

    Shimotsu S, Oikawa S, Saitou T, Mitsugi N, Kubodera K, Kawanishi T, Izutsu M 2001 IEEE Photon. Technol. Lett. 13 364Google Scholar

    [20]

    王侠, 韦慕野, 邓东锋, 何锋, 欧阳竑, 余志强, 伍颖, 李文甫, 杨庆锐, 李鹏伟 2021 光电技术应用 36 47Google Scholar

    Wang X, Wei M Y, Deng D F, He F, Ouyang H, Yu Z Q, Wu Y, Li W F, Yang Q R, Li P W 2021 Ele. Optic Technol. Appl. 36 47Google Scholar

    [21]

    Vetsch E, Reitz D, Sague G, Schmidt R, Dawkins S T, Rauschenbeutel A 2010 Phys. Rev. Lett. 104 203603Google Scholar

  • [1] 要佳敏, 庄伟, 冯金扬, 王启宇, 赵阳, 王少凯, 吴书清, 李天初. 基于系数搜索的振动补偿方法. 物理学报, 2022, 71(11): 119101. doi: 10.7498/aps.71.20220037
    [2] 车浩, 李安, 方杰, 葛贵国, 高伟, 张亚, 刘超, 许江宁, 常路宾, 黄春福, 龚文斌, 李冬毅, 陈曦, 覃方君. 基于冷原子重力仪的船载动态绝对重力测量实验研究. 物理学报, 2022, 71(11): 113701. doi: 10.7498/aps.71.20220113
    [3] 王凯楠, 徐晗, 周寅, 许云鹏, 宋微, 汤鸿志, 王巧薇, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 程冰, 李德钊, 乔中坤, 吴彬, 林强. 基于车载原子重力仪的外场绝对重力快速测绘研究. 物理学报, 2022, 71(15): 159101. doi: 10.7498/aps.71.20220267
    [4] 张士钊, 朴胜春. 倾斜弹性海底条件下浅海声场的简正波相干耦合特性分析. 物理学报, 2021, 70(21): 214304. doi: 10.7498/aps.70.20211013
    [5] 许家豪, 王云新, 王大勇, 周涛, 杨锋, 钟欣, 张弘骉, 杨登才. 基于载波抑制单边带调制的微波光子本振倍频上转换方法. 物理学报, 2019, 68(13): 134204. doi: 10.7498/aps.68.20190266
    [6] 黄馨瑶, 项玉, 孙风潇, 何琼毅, 龚旗煌. 平面自旋压缩态的产生与原子干涉的机理. 物理学报, 2015, 64(16): 160304. doi: 10.7498/aps.64.160304
    [7] 李晶, 宁提纲, 裴丽, 简伟, 油海东, 陈宏尧, 张婵, 李超. 基于双平行马赫曾德调制器的动态可调光载波边带比光单边带调制:理论分析与实验研究. 物理学报, 2013, 62(22): 224210. doi: 10.7498/aps.62.224210
    [8] 杜杨, 雷耀虎, 刘鑫, 郭金川, 牛憨笨. 硬X射线光栅微分干涉相衬成像两步相移算法的理论与实验研究. 物理学报, 2013, 62(6): 068702. doi: 10.7498/aps.62.068702
    [9] 范德胜, 孟祥锋, 杨修伦, 王玉荣, 彭翔, 何文奇. 基于相移干涉术的光学信息隐藏系统的软件实现. 物理学报, 2012, 61(24): 244204. doi: 10.7498/aps.61.244204
    [10] 侯奋飞, 杨宏. 多信道梳状滤波器信道间的相移补偿(已撤稿). 物理学报, 2010, 59(4): 2577-2581. doi: 10.7498/aps.59.2577
    [11] 孟祥锋, 蔡履中, 王玉荣, 彭翔. 两步广义相移干涉术的光学实验验证. 物理学报, 2009, 58(3): 1668-1674. doi: 10.7498/aps.58.1668
    [12] 朱常兴, 冯焱颖, 叶雄英, 周兆英, 周永佳, 薛洪波. 利用原子干涉仪的相位调制进行绝对转动测量. 物理学报, 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [13] 林旭升, 吴立军, 郭 旗, 胡 巍, 兰 胜. 条形耦合波导对光子晶体耦合缺陷模的影响. 物理学报, 2008, 57(12): 7717-7724. doi: 10.7498/aps.57.7717
    [14] 韩久宁, 王苍龙, 栗生长, 段文山. 二维热离子等离子体中离子声孤波的相互作用. 物理学报, 2008, 57(10): 6068-6073. doi: 10.7498/aps.57.6068
    [15] 郭邦红, 路轶群, 王发强, 赵 峰, 胡 敏, 林一满, 廖常俊, 刘颂豪. 相位调制量子密钥分配系统中低频振动相移的实时跟踪补偿. 物理学报, 2007, 56(7): 3695-3702. doi: 10.7498/aps.56.3695
    [16] 张 力, 周善贵, 孟 杰, 赵恩广. 单粒子共振态的实稳定方法研究. 物理学报, 2007, 56(7): 3839-3844. doi: 10.7498/aps.56.3839
    [17] 陈昌远, 陆法林, 孙东升. Hulthén势散射态的解析解. 物理学报, 2007, 56(11): 6204-6208. doi: 10.7498/aps.56.6204
    [18] 秦晓娟, 郭 旗, 胡 巍, 兰 胜. 椭圆强非局域空间光孤子. 物理学报, 2006, 55(3): 1237-1243. doi: 10.7498/aps.55.1237
    [19] 罗志勇, 杨丽峰, 陈允昌. 基于多光束干涉原理的相移算法研究. 物理学报, 2005, 54(7): 3051-3057. doi: 10.7498/aps.54.3051
    [20] 陈昌远, 孙东升, 刘成林, 陆法林. n维氢原子的散射态. 物理学报, 2003, 52(4): 781-785. doi: 10.7498/aps.52.781
计量
  • 文章访问数:  3469
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-30
  • 修回日期:  2022-10-07
  • 上网日期:  2022-11-11
  • 刊出日期:  2023-01-20

/

返回文章
返回