-
With the continuous advancement in micro-scale exploration, micro/nano fabrication technologies, represented by photolithography and various etching processes, have been widely applied in the manufacturing of micro- and nanoscale structures and devices. These advancements drive innovation in fields such as integrated circuits, micro-nano optoelectronic devices, and micro-electromechanical systems, while also bringing new opportunities to fundamental scientific research, including the study of microscopic property regulation mechanisms. In recent years, as an emerging micro-nano fabrication technology, thermal scanning probe lithography (t-SPL) has shown promise in applications related to the fabrication and property regulation of two-dimensional materials, as well as the creation of nanoscale grayscale structures, demonstrating unique advantages. By employing manufacturing methods such as material removal and modification, t-SPL can be used as an advanced technology for regulation of two-dimensional material properties, or directly effectively regulate various properties of two-dimensional materials, thereby significantly improving the performance of two-dimensional material devices, or advancing fundamental scientific research at the micro/nano scales. This paper will start with the principles and characteristics of t-SPL, analyze its recent research progress in the micro-nano fabrication and property modulation of two-dimensional materials, including several researches achieved by using t-SPL as the core manufacturing methods, such as direct patterning, strain engineering, and reaction kinetics research of two-dimensional materials. Finally, we will summarize the challenges in t-SPL technology, propose corresponding possible solutions, and explore the promising applications of this technology.
-
Keywords:
- thermal scanning probe lithography /
- two-dimensional materials /
- micro-nano fabrication /
- property regulation
-
[1] Mamin H J, Rugar D 1992Appl. Phys. Lett. 61 1003
[2] Vettiger P, Cross G, Despont M, Drechsler U, Durig U, Gotsmann B, Haberle W, Lantz M A, Rothuizen H E, Stutz R, Binnig G K 2002IEEE Trans. Nanotechnol. 1 39
[3] Howell S T, Grushina A, Holzner F, Brugger J 2020Microsyst. Nanoeng. 6 21
[4] Paul P C, Knoll A W, Holzner F, Despont M, Duerig U 2011Nanotechnology 22 275306
[5] Lloyd D, Liu X H, Christophe J W, Cantley L, Wadehra A, Kim B L, Goldberg B B, Swan A K, Bunch J S 2016Nano Lett. 16 5836
[6] Palacios-Berraquero C, Kara D M, Montblanch A R P, Barbone M, Latawiec P, Yoon D, Ott A K, Loncar M, Ferrari A C, Atatüre M 2017Nat. Commun. 8 15093
[7] Meyer J C, Eder F, Kurasch S, Skakalova V, Kotakoski J, Park H J, Roth S, Chuvilin A, Eyhusen S, Benner G, Krasheninnikov A V, Kaiser U 2012Phys. Rev. Lett. 108 196102
[8] Park J B, Yoo J H, Grigoropoulos C P 2012Appl. Phys. Lett. 101 043110
[9] Liu X, Howell S T, Conde-Rubio A, Boero G, Brugger J 2020Adv. Mater. 32 2001232
[10] Dai Z H, Liu L Q, Zhang Z 2019Adv. Mater. 311805417
[11] Liu X, Sachan A K, Howell S T, Conde-Rubio A, Knoll A W, Boero G, Zenobi R, Brugger J 2020Nano Lett. 20 8250
[12] Kirchner R, Guzenko V A, Schift H 2019Adv. Opt. Technol. 8 175
[13] Erbas B, Conde-Rubio A, Liu X, Pernollet J, Wang Z Y, Bertsch A, Penedo M, Fantner G, Banerjee M, Kis A, Boero G, Brugger J 2024Microsyst. Nanoeng. 10 28
[14] Liu X, Erbas B, Conde-Rubio A, Rivano N, Wang Z, Jiang J, Bienz S, Kumar N, Sohier T, Penedo M, Banerjee M, Fantner G, Zenobi R, Marzari N, Kis A, Boero G, Brugger J 2024Nat. Commun. 15 6934
[15] Wei Z Q, Wang D B, Kim S, Kim S Y, Hu Y K, Yakes M K, Laracuente A R, Dai Z T, Marder S R, Berger C, King W P, de Heer W A, Sheehan P E, Riedo E 2010Science 328 1373
[16] Carroll K M, Lu X, Kim S, Gao Y, Kim H J, Somnath S, Polloni L, Sordan R, King W P, Curtis J E, Riedo E 2014Nanoscale 6 1299
[17] Raghuraman S, Elinski M B, Batteas J D, Felts J R 2017Nano Lett. 17 2111
[18] Zheng X R, Calò A, Cao T F, Liu X Y, Huang Z J, Das P M, Drndic M, Albisetti E, Lavini F, Li T D, Narang V, King W P, Harrold J W, Vittadello M, Aruta C, Shahrjerdi D, Riedo E 2020Nat. Commun. 11 3463
[19] Lassaline N, Thureja D, Petter D, Murthy P A, Knoll A W, Norris D J 2021ACS Nano Lett. 21 8175
[20] Cheng G, Wang Z, Man Z, Chen M, Bian J, Lu Z, Zhang W 2022ACS Appl. Nano Mater. 5 5756
[21] Wu H, Wang Y, Yu J, Pan J, Cho H, Gupta A, Goropceanu I, Zhou C, Park J, Talapin D V 2022J. Am. Chem. Soc. 144 10495
[22] Rostami M, Markovic A, Wang Y, Pernollet J, Zhang X S, Liu X, Brugger J 2023Adv. Sci. 11 2303518
[23] Feng J, Qian X F, Huang C W, Li J 2012Nat. Photonics 6 866
[24] Ren H T, Zhang L, Xiang G 2020Appl. Phys. Lett. 116 012401
[25] Bai K K, Zhou Y, Zheng H, Meng L, Peng H L, Liu Z F, Nie J C, He L 2014Phys. Rev. Lett. 113 086102
计量
- 文章访问数: 67
- PDF下载量: 4
- 被引次数: 0