搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于扫描热探针技术的二维材料物性调控研究进展

赵世杰 马浩南 刘霞

引用本文:
Citation:

基于扫描热探针技术的二维材料物性调控研究进展

赵世杰, 马浩南, 刘霞

Research progress in the regulation of physical properties of two-dimensional materials based on thermal scanning probe lithography

Zhao Shi-Jie, Ma Hao-Nan, Liu Xia
PDF
导出引用
  • 随着微观领域探索的不断深入,以光刻和各类刻蚀工艺为代表的微纳加工技术已被广泛应用于微米及纳米尺度的结构与器件制造,推动了集成电路、微纳光电器件、微机电系统等领域的不断革新。这不仅带动了设备性能的提升,还为微观物性调控机制的基础科学研究带来了新的机遇。近年来,作为一种新兴的微纳加工技术,扫描热探针技术(t-SPL)在二维材料加工、物性调控和纳米级灰度结构制造方面获得了实践应用,并展现出独特优势。本文将从扫描热探针技术的原理及特点出发,分析其在二维材料微纳加工及物性调控领域的最新研究进展,最后展望该技术的广阔应用前景。
    With the continuous advancement in micro-scale exploration, micro/nano fabrication technologies, represented by photolithography and various etching processes, have been widely applied in the manufacturing of micro- and nanoscale structures and devices. These advancements drive innovation in fields such as integrated circuits, micro-nano optoelectronic devices, and micro-electromechanical systems, while also bringing new opportunities to fundamental scientific research, including the study of microscopic property regulation mechanisms. In recent years, as an emerging micro-nano fabrication technology, thermal scanning probe lithography (t-SPL) has shown promise in applications related to the fabrication and property regulation of two-dimensional materials, as well as the creation of nanoscale grayscale structures, demonstrating unique advantages. By employing manufacturing methods such as material removal and modification, t-SPL can be used as an advanced technology for regulation of two-dimensional material properties, or directly effectively regulate various properties of two-dimensional materials, thereby significantly improving the performance of two-dimensional material devices, or advancing fundamental scientific research at the micro/nano scales. This paper will start with the principles and characteristics of t-SPL, analyze its recent research progress in the micro-nano fabrication and property modulation of two-dimensional materials, including several researches achieved by using t-SPL as the core manufacturing methods, such as direct patterning, strain engineering, and reaction kinetics research of two-dimensional materials. Finally, we will summarize the challenges in t-SPL technology, propose corresponding possible solutions, and explore the promising applications of this technology.
  • [1]

    Mamin H J, Rugar D 1992Appl. Phys. Lett. 61 1003

    [2]

    Vettiger P, Cross G, Despont M, Drechsler U, Durig U, Gotsmann B, Haberle W, Lantz M A, Rothuizen H E, Stutz R, Binnig G K 2002IEEE Trans. Nanotechnol. 1 39

    [3]

    Howell S T, Grushina A, Holzner F, Brugger J 2020Microsyst. Nanoeng. 6 21

    [4]

    Paul P C, Knoll A W, Holzner F, Despont M, Duerig U 2011Nanotechnology 22 275306

    [5]

    Lloyd D, Liu X H, Christophe J W, Cantley L, Wadehra A, Kim B L, Goldberg B B, Swan A K, Bunch J S 2016Nano Lett. 16 5836

    [6]

    Palacios-Berraquero C, Kara D M, Montblanch A R P, Barbone M, Latawiec P, Yoon D, Ott A K, Loncar M, Ferrari A C, Atatüre M 2017Nat. Commun. 8 15093

    [7]

    Meyer J C, Eder F, Kurasch S, Skakalova V, Kotakoski J, Park H J, Roth S, Chuvilin A, Eyhusen S, Benner G, Krasheninnikov A V, Kaiser U 2012Phys. Rev. Lett. 108 196102

    [8]

    Park J B, Yoo J H, Grigoropoulos C P 2012Appl. Phys. Lett. 101 043110

    [9]

    Liu X, Howell S T, Conde-Rubio A, Boero G, Brugger J 2020Adv. Mater. 32 2001232

    [10]

    Dai Z H, Liu L Q, Zhang Z 2019Adv. Mater. 311805417

    [11]

    Liu X, Sachan A K, Howell S T, Conde-Rubio A, Knoll A W, Boero G, Zenobi R, Brugger J 2020Nano Lett. 20 8250

    [12]

    Kirchner R, Guzenko V A, Schift H 2019Adv. Opt. Technol. 8 175

    [13]

    Erbas B, Conde-Rubio A, Liu X, Pernollet J, Wang Z Y, Bertsch A, Penedo M, Fantner G, Banerjee M, Kis A, Boero G, Brugger J 2024Microsyst. Nanoeng. 10 28

    [14]

    Liu X, Erbas B, Conde-Rubio A, Rivano N, Wang Z, Jiang J, Bienz S, Kumar N, Sohier T, Penedo M, Banerjee M, Fantner G, Zenobi R, Marzari N, Kis A, Boero G, Brugger J 2024Nat. Commun. 15 6934

    [15]

    Wei Z Q, Wang D B, Kim S, Kim S Y, Hu Y K, Yakes M K, Laracuente A R, Dai Z T, Marder S R, Berger C, King W P, de Heer W A, Sheehan P E, Riedo E 2010Science 328 1373

    [16]

    Carroll K M, Lu X, Kim S, Gao Y, Kim H J, Somnath S, Polloni L, Sordan R, King W P, Curtis J E, Riedo E 2014Nanoscale 6 1299

    [17]

    Raghuraman S, Elinski M B, Batteas J D, Felts J R 2017Nano Lett. 17 2111

    [18]

    Zheng X R, Calò A, Cao T F, Liu X Y, Huang Z J, Das P M, Drndic M, Albisetti E, Lavini F, Li T D, Narang V, King W P, Harrold J W, Vittadello M, Aruta C, Shahrjerdi D, Riedo E 2020Nat. Commun. 11 3463

    [19]

    Lassaline N, Thureja D, Petter D, Murthy P A, Knoll A W, Norris D J 2021ACS Nano Lett. 21 8175

    [20]

    Cheng G, Wang Z, Man Z, Chen M, Bian J, Lu Z, Zhang W 2022ACS Appl. Nano Mater. 5 5756

    [21]

    Wu H, Wang Y, Yu J, Pan J, Cho H, Gupta A, Goropceanu I, Zhou C, Park J, Talapin D V 2022J. Am. Chem. Soc. 144 10495

    [22]

    Rostami M, Markovic A, Wang Y, Pernollet J, Zhang X S, Liu X, Brugger J 2023Adv. Sci. 11 2303518

    [23]

    Feng J, Qian X F, Huang C W, Li J 2012Nat. Photonics 6 866

    [24]

    Ren H T, Zhang L, Xiang G 2020Appl. Phys. Lett. 116 012401

    [25]

    Bai K K, Zhou Y, Zheng H, Meng L, Peng H L, Liu Z F, Nie J C, He L 2014Phys. Rev. Lett. 113 086102

  • [1] 张洋, 张志豪, 王宇剑, 薛晓兰, 陈令修, 石礼伟. 偏振调制扫描光学显微镜方法. 物理学报, doi: 10.7498/aps.73.20240688
    [2] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展. 物理学报, doi: 10.7498/aps.72.20222095
    [3] 鲍昌华, 范本澍, 汤沛哲, 段文晖, 周树云. 量子材料的弗洛凯调控. 物理学报, doi: 10.7498/aps.72.20231423
    [4] 段秀铭, 易志军. 介电环境屏蔽效应对二维InX (X = Se, Te)激子结合能调控机制的理论研究. 物理学报, doi: 10.7498/aps.72.20230528
    [5] 刘天瑶, 刘灿, 刘开辉. 表界面调控米级二维单晶原子制造. 物理学报, doi: 10.7498/aps.71.20212399
    [6] 吴燕飞, 朱梦媛, 赵瑞杰, 刘心洁, 赵云驰, 魏红祥, 张静言, 郑新奇, 申见昕, 黄河, 王守国. 二维范德瓦尔斯异质结构的制备与物性研究. 物理学报, doi: 10.7498/aps.71.20212033
    [7] 韩相和, 黄子豪, 范朋, 朱诗雨, 申承民, 陈辉, 高鸿钧. 表面原子操纵与物性调控研究进展. 物理学报, doi: 10.7498/aps.71.20220405
    [8] 王娅巽, 郭迪, 李建高, 张东波. 低维材料物性的非均匀应变调控. 物理学报, doi: 10.7498/aps.71.20220085
    [9] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, doi: 10.7498/aps.71.20211902
    [10] 黄新玉, 韩旭, 陈辉, 武旭, 刘立巍, 季威, 王业亮, 黄元. 二维材料解理技术新进展及展望. 物理学报, doi: 10.7498/aps.71.20220030
    [11] 刘雨亭, 贺文宇, 刘军伟, 邵启明. 二维材料中贝里曲率诱导的磁性响应. 物理学报, doi: 10.7498/aps.70.20202132
    [12] 廖俊懿, 吴娟霞, 党春鹤, 谢黎明. 二维材料的转移方法. 物理学报, doi: 10.7498/aps.70.20201425
    [13] 陈旭凡, 杨强, 胡小会. 过渡金属原子掺杂对二维CrBr3电磁学性能的调控. 物理学报, doi: 10.7498/aps.70.20210936
    [14] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明. 光栅局域调控二维光电探测器. 物理学报, doi: 10.7498/aps.70.20201325
    [15] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控. 物理学报, doi: 10.7498/aps.70.20202146
    [16] 徐依全, 王聪. 基于二维材料的全光器件. 物理学报, doi: 10.7498/aps.69.20200654
    [17] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展. 物理学报, doi: 10.7498/aps.69.20200709
    [18] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强. 物理学报, doi: 10.7498/aps.69.20200452
    [19] 李潇男, 关国荣, 刘忆琨, 梁浩文, 张爱琴, 周建英. 矢量光共焦扫描显微系统纳米标准样品的制备与物理测量精度. 物理学报, doi: 10.7498/aps.68.20190252
    [20] 刘丰, 胡晓堃, 栗岩锋, 邢岐荣, 胡明列, 柴路, 王清月. 刻划微棱锥抗反射层的GaP太赫兹波发射器. 物理学报, doi: 10.7498/aps.61.040703
计量
  • 文章访问数:  67
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-13

/

返回文章
返回