-
非平衡稠密等离子体中电子离子能量弛豫对理解惯性约束聚变、实验室等离子体和天体物理中的非平衡演化以及宏观热力学和输运性质至关重要.受密度及温度等环境效应的影响,等离子体中多种物理效应之间的竞合作用共同主导电子离子能量弛豫过程.本文从量子Lenard-Balescu动理学方程出发,建立了考虑电子和离子集体激发及其耦合效应的能量弛豫模型,并在此基础上采用电子离子解耦、静态极限和长波近似构建了不同的简化模型,系统研究了静态屏蔽、动态屏蔽、电子和离子等离激元激发及其耦合等效应对电子离子能量弛豫的影响机制.通过不同模型之间的对比,发现中等波长和短波区间的屏蔽效应以及电子离子集体激发之间的耦合效应对温热稠密等离子体中电子离子能量弛豫有着显著的影响.这一结论表明,准确描述等离子体中的动态响应和屏蔽效应将制约着相关物理体系中非平衡演化建模的精确性和有效性.Accurate knowledge of electron-ion energy relaxation plays a vital role in non-equilibrium dense plasmas with wide applications such as in inertial confinement fusion, in laboratory plasmas, and in astrophysics. We present a theoretical model for the energy transfer rate of electron-ion energy relaxation in dense plasmas, where the electron-ion coupled mode effects are taken into account. Based on the proposed model, other simplified models have also derived with the introduction of the approximations of decoupling of electrons and ions, static limit as well as long-wavelength limit. Detailed analysis of the influence of dynamic response and screening effects on electron-ion energy relaxation is performed. Using the models developed in the present work, the energy transfer rates under different plasma conditions are calculated and compared. For the screening effect, it is found that the behavior of electron screening based on the random phase approximation is significantly different from the one under the long-wave approximation. This difference have important influence on the electron-ion energy relaxation and temperature equilibration in plasmas with temperature $T_\mathrm{e} < T_\mathrm{i}$. By comparing different models, it is shown that effects of dynamic response such as the dynamic screening and coupled-mode effect have stronger impact on the electron-ion energy relaxation and temperature equilibration. The effect of dynamic response will bring about an order of magnitude difference in the electron-ion energy transfer rate in the case of strong degeneracy. As a conclusion, correctly taking into account the finite-wavelength screening of electrons and the coupling of electronic and ionic plasmon excitation is of essential importance in determining the energy transfer rates for electron-ion energy relaxation in dense plasmas.
-
Keywords:
- energy relaxation /
- warm and hot dense matter /
- plasma screening /
- dynamical response of plasmas
-
[1] Lindl J 1995 Phys. Plasmas 2 3933
[2] Drake R 2018 High-Energy-Density Physics: Foundation of Inertial Fusion and Experimental Astrophysics (Springer International Publishing AG), p367
[3] Lin C L, He B, Wu Y, Wang J G 2023 Nucl. Fusion 63 106005
[4] Haines B 2024 Phys. Plasmas 31 050501
[5] Zhao Y K, Ouyang B Y, Wen W, Wang M 2015, Acta Phys. Sin. 64 045205 (in Chinese) [赵英奎,欧阳碧耀, 文武, 王敏 2005 物理学报 64 045205]
[6] Zhang E H, Cai H B, Du B, Tian J M, Zhang W S, Kang D G, Zhu S P 2020, Acta Phys. Sin. 69 035204 (in Chinese) [ 张恩浩, 蔡洪波, 杜报, 田建民, 张文帅, 康洞国, 朱少平 2020 物理学报 69 035204]
[7] Mahieu B, Jourdain N, Ta Phuoc K et al. 2018 Nat. Commun. 9 3276
[8] Fletcher L B, Vorberger J, Schumaker W et al. 2022 Front. Phys. 10 838524
[9] Chen W T, Witte C, Roberts J L 2017 Phys. Rev. E 96 013203
[10] Sprenkle R T, Silvestri L G, Murillo M S, Bergeson S D 2022 Nat. Commun. 13 15
[11] Vanthieghem A, Tsiolis V, Spitkovsky A, Todo Y, Sekiguchi K, Fiuza F 2024 Phys. Rev. Lett. 132 265201
[12] Spitzer L 1962 Physics of Fully Ionized Gases (Interscience); Landau L D 1965 Collected Papers of L.D. Landau p163
[13] Gericke D O, Murillo M S, Schlanges M 2002 Phys. Rev. E 65 036418
[14] Brown L S, Singleton R L 2009 Phys. Rev. E 79 066407
[15] Hazak G, Zinamon Z, Rosenfeld Y, Dharma-wardana M W C 2001 Phys. Rev. E 64 066411
[16] Daligault J, Dimonte G 2009 Phys. Rev. E 79 056403
[17] Chapman D A, Vorberger J, Gericke D O 2013 Phys. Rev. E 88 013102
[18] Scullard C R, Serna S, Benedict L X, Leland Ellison C, Graziani F R 2018 Phys. Rev. E 97 013205
[19] Simoni J, Daligault J 2020 Phys. Rev. E 101 013205
[20] Rightley S, Baalrud S D 2021 Phys. Rev. E 103 063206
[21] Glosli J N, Graziani F R, More R M et al. 2008 Phys. Rev. E 78 025401
[22] Jeon B, Foster M, Colgan J, Csanak G, Kress J D, Collins L A, Gronbech-Jensen N 2008 Phys. Rev. E 78 036403
[23] Murillo M S, Dharma-wardana M W C 2008 Phys. Rev. Lett. 100 205005
[24] Benedict L X, Surh M P, Stanton L G et al. 2017 Phys. Rev. E 95 043202
[25] Ma Q, Dai J Y, Kang D D, Murillo M S, Hou Y, Zhao Z X, Yuan J M 2019 Phys. Rev. Lett. 122 015001
[26] Nanbu K 1997 Phys. Rev. E 55 4642
[27] Zhao Y J 2018 Phys. Plasmas 25 032707
[28] Gericke D O 2005 J. Phys. Conf. Ser. 11 111
[29] Hansen J P, McDonald I R 2006 Theory of Simple Liquids (Academic Press), p294
[30] Arista N R, Brandt W 1984 Phys. Rev. A 29 1471
[31] Kremp D, Schlanges, Kraft W D 2005 Quantum Statistics of Nonideal Plasmas (Springer-Verlag Berlin Heidelberg), chapter 4
[32] Chapman D A, Vorberger J, Fletcher L B et al. 2015 Nat. Commun. 6 6839
[33] Vorberger J, Gericke D O 2009 Phys. Plasma 16 082702
计量
- 文章访问数: 94
- PDF下载量: 6
- 被引次数: 0