-
轫致辐射作为原子物理中重要的辐射过程, 在天体物理、等离子体物理、磁约束和惯性约束核聚变等领域具有重要研究意义. 本文基于相对论分波展开方法研究了中高能电子碰撞中性碳原子以及各价态碳离子的轫致辐射过程, 并探讨电子屏蔽效应对轫致辐射截面及角分布的影响. 利用Dirac-Hartree-Fock理论构建靶原子波函数, 在中心场近似下建立电子-靶原子相互作用势, 基于相对论分波展开方法通过数值求解Dirac方程得到电子连续态波函数, 对不同价态碳离子的轫致辐射单重、双重微分截面以及角分布函数进行详细计算, 分析电子屏蔽效应在不同入射电子能量和出射光子能量下的作用. 结果表明, 电子屏蔽效应会使轫致辐射单重和双重微分截面降低, 在较低能电子入射时以及软光子区域抑制效果显著, 而随着入射电子能量和出射光子能量的增加, 电子屏蔽效应不断减弱. 电子屏蔽效应对轫致辐射角分布的影响则较不明显.Bremsstrahlung, as an important radiation process in atomic physics, has significant applications in the fields of astrophysics, plasma physics, magnetic and inertial confinement fusion. In this work, the relativistic partial-wave expansion method is used to investigate the bremsstrahlung of neutral carbon atoms and different charged carbon ions scattered from intermediate- and high-energy relativistic electrons, with special attention paid to the electronic screening effect produced by the target electrons. The target wave function is obtained from the Dirac-Hartree-Fock self-consistent calculations, and the electron-atom scattering interaction potential is constructed in the central-field approximation. By solving the partial-wave Dirac equation, the continuum wave functions of the relativistic electron are obtained, from which the bremsstrahlung single and double differential cross sections can be calculated via the multipole free-free transitions between the incident and exit free electrons. The target electronic screening effects on the bremsstrahlung single and double differential cross sections are analyzed under a variety of conditions of incident electron energy and emitted photon energy. It is shown that the target electronic screening effect will significantly suppress the cross sections both at low incident energy and in the soft-photon region. Such a suppressing effect decreases with the incident electron energy and the emitted photon energy gradually increasing. Overall, the electronic screening effect has no significant influence on the shape function of bremsstrahlung.
-
Keywords:
- bremsstrahlung /
- C atoms and ions /
- differential cross sections /
- shape function /
- electronic screening effect
[1] Buǐmistrov V M, Trakhtenberg L I 1975 J. Exp. Theor. Phys. 42 54
[2] Amus'ya M Y, Baltenkov A S, Paiziev A A 1976 JETP Lett. 24 332
[3] Korol A V, Obolensky O I, Solov'yov A V, Solovjev I A 2001 J. Phys. B: At. Mol. Opt. Phys. 34 1589Google Scholar
[4] Lea S M, Silk J, Kellogg E, Murray S 1973 Astrophys. J. 184 L105Google Scholar
[5] Cavaliere A, Fusco-Femiano R 1976 Astron. Astrophys. 49 137
[6] Hannestad S, Raffelt G 1998 Astrophys. J. 507 339Google Scholar
[7] Wang W Y, Lu J G, Tong H, Ge M Y, Li Z S, Men Y P, Xu R X 2017 Astrophys. J. 837 81Google Scholar
[8] Steane A M 2024 Phys. Rev. D 109 063032Google Scholar
[9] Maydanyuk S P, Zhang P M, Zou L P 2016 Phys. Rev. C 93 014617Google Scholar
[10] Omar A, Andreo P, Poludniowski G 2018 Radiat. Phys. Chem. 148 73Google Scholar
[11] Jakubassa-Amundsen D H 2021 arXiv: 2103.06034 [physics. atom-ph]
[12] Li L, An Z, Zhu J J, Tan W J, Sun Q, Liu M T 2019 Phys. Rev. A 99 052701Google Scholar
[13] Kornev A S, Zon B A, Chernov V E, Amusia M Y, Kubelík P, Ferus M 2022 Atoms 10 86Google Scholar
[14] Milstein A I, Salnikov S G, Kozlov M G 2023 Nucl. Instrum. Methods Phys. Res., Sect. B 539 9Google Scholar
[15] Guazzotto L, Betti R 2019 Plasma Phys. Control. Fusion 61 085028Google Scholar
[16] Bhaskar B S, Koivisto H, Tarvainen O, Thuillier T, Toivanen V, Kalvas T, Izotov I, Skalyga V, Kronholm R, Marttinen M 2021 Plasma Phys. Control. Fusion 63 095010Google Scholar
[17] Bone T, Sedwick R 2024 Acta Astronaut. 220 356Google Scholar
[18] Batani D, Antonelli L, Barbato F, et al. 2018 Nucl. Fusion 59 032012Google Scholar
[19] Ren K, Wu J F, Dong J J, Li Y R, Huang T X, Zhao H, Liu Y Y, Cao Z R, Zhang J Y, Mu B Z, Yan J, Jiang W, Pu Y D, Li Y L, Peng X S, Xu T, Yang J M, Lan K, Ding Y K, Jiang S E, Wang F 2021 Sci. Rep. 11 14492Google Scholar
[20] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar
[21] Boozer A H 2005 Rev. Mod. Phys. 76 1071Google Scholar
[22] Munirov V R, Fisch N J 2023 Phys. Rev. E 107 065205Google Scholar
[23] Underwood C I D, Baird C D, Murphy C D, et al. 2020 Plasma Phys. Control. Fusion 62 124002Google Scholar
[24] Singh S, Armstrong C D, Kang N, et al. 2021 Plasma Phys. Control. Fusion 63 035004Google Scholar
[25] Benitez J, Todd D, Xie D 2022 J. Phys.: Conf. Ser. 2244 012083Google Scholar
[26] Rong X, Du Y, Ljungberg M, Rault E, Vandenberghe S, Frey E C 2012 Med. Phys. 39 2346Google Scholar
[27] Roshan H R, Mahmoudian B, Gharepapagh E, Azarm A, Islamian J P 2016 Appl. Radiat. Isot. 108 124Google Scholar
[28] Uribe C F, Esquinas P L, Gonzalez M, Celler A 2016 Phys. Med. 32 691Google Scholar
[29] Porter C A, Bradley K M, Hippeläinen E T, Walker M D, McGowan D R 2018 EJNMMI Res. 8 1Google Scholar
[30] Tijani S A, Al-Hadeethi Y, Sambo I, Balogun F A 2018 J. Radiol. Prot. 38 N44Google Scholar
[31] Bethe H, Heitler W 1934 Proc. R. Soc. London, Ser. A 146 83Google Scholar
[32] Tseng H K, Pratt R H 1971 Phys. Rev. A 3 100Google Scholar
[33] Pratt R H, Tseng H K, Lee C M, Kissel L 1977 At. Data Nucl. Data Tables 20 175Google Scholar
[34] Poškus A 2018 Comput. Phys. Commun. 232 237Google Scholar
[35] Poškus A 2022 Comput. Phys. Commun. 278 108414Google Scholar
[36] Poškus A 2019 At. Data Nucl. Data Tables 129-130 101277Google Scholar
[37] Poškus A 2021 Nucl. Instrum. Methods Phys. Res., Sect. B 508 49Google Scholar
[38] Wu J Y, Wu Y, Qi Y Y, Wang J G, Janev R K, Zhang S B 2019 Phys. Rev. A 99 012705Google Scholar
[39] Wu J Y, Wu Y, Qi Y Y, Wang J G, Janev R K, Zhang S B 2019 Mon. Not. R. Astron. Soc. 486 141Google Scholar
[40] Wu J Y, Qi Y Y, Cheng Y J, Wu Y, Wang J G, Zhang S B 2020 Phys. Plasmas 27 043301Google Scholar
[41] Wu J Y, Cheng Y J, Poškus A, Wu Y, Wang J G, Zhang S B 2021 Phys. Rev. A 103 062802Google Scholar
[42] Avdonina N B, Pratt R H 1999 J. Phys. B: At. Mol. Opt. Phys. 32 4261Google Scholar
[43] Korol A V 1992 J. Phys. B: At. Mol. Opt. Phys. 25 L341Google Scholar
[44] Amusia M Y, Avdonina N B, Chernysheva L V, Kuchiev M Y 1985 J. Phys. B: Atom. Mol. Phys. 18 L791Google Scholar
[45] Korol A V, Lyalin A G, Solovy'ov A V, Avdonina N B, Pratt R H 2002 J. Phys. B: At. Mol. Opt. Phys. 35 1197Google Scholar
[46] Tseng H K, Pratt R H 1973 Phys. Rev. A 7 1502Google Scholar
[47] Mangiarotti A, Lauth W, Jakubassa-Amundsen D H, Klag P, Malafronte A A, Martins M N, Nielsen C F, Uggerhøj U I 2021 Phys. Lett. B 815 136113Google Scholar
[48] Groshev M E, Zaytsev V A, Yerokhin V A, Hillenbrand P M, Litvinov Y A, Shabaev V M 2022 Phys. Rev. A 105 052803Google Scholar
[49] Yerokhin V A, Surzhykov A 2010 Phys. Rev. A 82 062702Google Scholar
[50] Yerokhin V A, Surzhykov A, Märtin R, Tashenov S, Weber G 2012 Phys. Rev. A 86 032708Google Scholar
[51] García-Alvarez J A, Fernández-Varea J M, Vanin V R, Maidana N L 2018 J. Phys. B: At. Mol. Opt. Phys. 51 225003Google Scholar
[52] Li L, An Z, Zhu J J, Lin W P, Williams S 2021 Nucl. Instrum. Methods Phys. Res., Sect. B 506 15Google Scholar
[53] Gu M F 2008 Can. J. Phys. 86 675Google Scholar
[54] Rodrigues G C, Indelicato P, Santos J P, Patté P, Parente F 2004 At. Data Nucl. Data Tables 86 117Google Scholar
[55] Kramida A, Yu Ralchenko, Reader J, and NIST ASD Team 2024 NIST Atomic Spectra Database (Ver. 5.12) https://physics.nist.gov/asd [2025-1-6]
[56] Lee C M, Kissel L, Pratt R H, Tseng H K 1976 Phys. Rev. A 13 1714Google Scholar
[57] Kissel L, Quarles C A, Pratt R H 1983 At. Data Nucl. Data Tables 28 381Google Scholar
-
图 2 $ \rm C^{2+} $离子轫致辐射单重微分截面 (a)入射电子动能$ T_{1} $为1, 10, 100和1000 keV; (b)出射光子能量占比$ E_{{\mathrm{p}}} / T_{1} $为0.05—0.95
Fig. 2. Bremsstrahlung single differential cross section for the $ \rm C^{2+} $ ion: (a) The kinetic energies of the incident electron $ T_{1} $ are 1, 10, 100 and 1000 keV; (b) the ratios of the emitted photon energy to the incident electron energy $ E_{{\mathrm{p}}}/T_{1} $ are in the range of 0.05–0.95.
图 3 中性C原子及$ \rm C^{6+} $, $ \rm C^{5+} $, $ \rm C^{4+} $, $ \rm C^{2+} $离子的轫致辐射单重微分截面随发射光子能量占比$ E_{{\mathrm{p}}}/T_{1} $的变化 (a) $ T_{1}=1 $ keV; (b) $ T_{1}=10 $ keV; (c) $ T_{1}=100 $ keV; (d) $ T_{1}=1000 $ keV
Fig. 3. Bremsstrahlung single differential cross sections of neutral C atom and $ \rm C^{6+} $, $ \rm C^{5+} $, $ \rm C^{4+} $, $ \rm C^{2+} $ ions as a function of $ E_{{\mathrm{p}}}/T_{1} $: (a) $ T_{1}=1 $ keV; (b) $ T_{1}=10 $ keV; (c) $ T_{1}=100 $ keV; (d) $ T_{1}=1000 $ keV.
图 4 中性C原子及$ \rm C^{6+} $, $ \rm C^{5+} $, $ \rm C^{4+} $, $ \rm C^{2+} $离子的轫致辐射单重微分截面随入射电子能量$ T_{1} $的变化 (a) $ E_{{\mathrm{p}}} / T_{1}=0.05 $; (b) $ E_{{\mathrm{p}}} / T_{1}=0.5 $; (c) $ E_{{\mathrm{p}}} / T_{1}=0.95 $
Fig. 4. Bremsstrahlung single differential cross sections of neutral C atom and $ \rm C^{6+} $, $ \rm C^{5+} $, $ \rm C^{4+} $, $ \rm C^{2+} $ ions as a function of $ T_1 $: (a) $ E_{{\mathrm{p}}} / T_{1}=0.05 $; (b) $ E_{{\mathrm{p}}} / T_{1}=0.5 $; (c) $ E_{{\mathrm{p}}} / T_{1}=0.95 $.
图 5 中性C原子轫致辐射双重微分截面随光子发射角$ \theta $的变化, 其中出射电子动能$ T_{2} $为1 keV, 入射电子动能$ T_{1} $分别20, 50, 100, 500和2000 keV
Fig. 5. Bremsstrahlung double differential cross sections of the neutral C atom as a function of the emission angle $ \theta $, where the kinetic energy of the emitted electron $ T_2 $ is 1 keV, and the kinetic energy of the incident electron $ T_1 $ is 20, 50, 100, 500, and 2000 keV.
图 6 中性C原子和$ \rm C^{2+} $, $ \rm C^{4+} $, $ \rm C^{5+} $, $ \rm C^{6+} $离子轫致辐射双重微分截面随光子发射角$ \theta $的变化, 其中入射电子动能$ T_1 $为10 keV, 发射光子能量占比$ E_{{\mathrm{p}}}/T_{1} $为(a) 0.05, (b) 0.2, (c) 0.6, (d) 0.95
Fig. 6. Bremsstrahlung double differential cross sections of neutral C atom and $ \rm C^{2+} $, $ \rm C^{4+} $, $ \rm C^{5+} $ and $ \rm C^{6+} $ ions as a function of the photon emission angle $ \theta $. The kinetic energy of the incident electron $ T_1 $ is 10 keV, and the ratios of the emitted photon energy $ E_{{\mathrm{p}}}/T_{1} $ are (a) 0.05, (b) 0.2, (c) 0.6 and (d) 0.95.
图 7 中性C原子和$ \rm C^{2+} $, $ \rm C^{4+} $, $ \rm C^{5+} $, $ \rm C^{6+} $离子轫致辐射双重微分截面随光子发射角$ \theta $的变化, 发射光子能量占比$ E_{{\mathrm{p}}}/T_{1} $为0.6, 入射电子动能$ T_1 $分别为(a) 1 keV, (b) 10 keV, (c) 100 keV, (d) 1000 keV
Fig. 7. Bremsstrahlung double differential cross sections of neutral C atom and $ \rm C^{2+} $, $ \rm C^{4+} $, $ \rm C^{5+} $ and $ \rm C^{6+} $ ions as a function of the photon emission angle $ \theta $. The ratio of the emitted photon energy $ E_{{\mathrm{p}}}/T_{1} $ is 0.6, and the kinetic energies of the incident electron $ T_1 $ are (a) 1 keV, (b) 10 keV, (c) 100 keV and (d) 1000 keV.
图 8 中性C原子和$ \rm C^{2+} $, $ \rm C^{4+} $, $ \rm C^{5+} $, $ \rm C^{6+} $离子的轫致辐射形状函数, 其中发射光子能量$ E_{\rm p}$均为5 keV, 入射电子动能$ T_1 $为(a) 20 keV, (b) 100 keV.
Fig. 8. Bremsstrahlung shape function of neutral C atom and $ \rm C^{2+} $, $ \rm C^{4+} $, $ \rm C^{5+} $ and $ \rm C^{6+} $ ions. The emitted photon energy $ E_{\rm p} $ is 5 keV, and the incident electron kinetic energies $ T_1 $ are (a) 20 keV and (b) 100 keV.
图 9 中性C原子和$ \rm C^{2+} $, $ \rm C^{4+} $, $ \rm C^{5+} $, $ \rm C^{6+} $离子的轫致辐射形状函数, 其中入射电子动能$ T_1 $均为50 keV, 发射光子能量$ E_{\rm p} $为(a) 5 keV, (b) 45 keV.
Fig. 9. Bremsstrahlung shape function of neutral C atom and $ \rm C^{2+} $, $ \rm C^{4+} $, $ \rm C^{5+} $ and $ \rm C^{6+} $ ions. The incident electron kinetic energy $ T_1 $ is 50 keV, and the emitted photon energies $ E_{\rm p} $ are (a) 5 keV and (b) 45 keV.
表 1 中性C原子及其各价态离子($\rm C^{1+}$, $\rm C^{2+}$, $\rm C^{3+}$, $\rm C^{4+}$, $\rm C^{5+}$)的基态轨道能量及总能量, 并与Rodrigues等 [54]的计算结果和NIST [55]的数据进行对比, 表中Diff表示当前计算结果和NIST数据相对误差
Table 1. Orbital and total energies of the neutral C atom and different charged ions ($\rm C^{1+}$, $\rm C^{2+}$, $\rm C^{3+}$, $\rm C^{4+}$, $\rm C^{5+}$) in their ground states and the comparison with results of Rodrigues et al. [54] and the NIST data [55]. “Diff” represents the relative errors between the present calculations of total energies and the NIST data[55].
Target $ E/ {\rm eV }$ Diff/% $ 1 {\mathrm{s}}_{1/2} $ $ 2 {\mathrm{s}}_{1/2} $ $ 2 {\mathrm{p}}_{1/2} $ $ 2 {\mathrm{p}}_{3/2} $ Total Ref. [54] NIST [55] C –298.98 –16.86 –9.08 –9.07 –1025.12 –1026 –1030.11 0.48 $ \rm C^{1+} $ –314.60 –30.44 –22.65 –1014.57 –1015 –1018.85 0.42 $ \rm C^{2+} $ –336.99 –47.29 –990.72 –991 –994.47 0.38 $ \rm C^{3+} $ –362.47 –66.27 –945.03 –945 –946.58 0.16 $ \rm C^{4+} $ –392.48 –880.85 –882.08 0.14 $ \rm C^{5+} $ –490.04 –490.04 –489.99 0.01 表 2 中性C原子轫致辐射单重微分截面$ \sigma(k) $, 并与Pratt等[33]的结果进行对比
Table 2. Comparison of present bremsstrahlung single differential cross section $ \sigma(k) $ for the neutral C atom with the calculations of Pratt et al[33].
$ T_1/{\rm{keV}} $ $ E_{\mathrm{p}}/T_1 $ $ \sigma(k) /\text{mb}$ Diff/% Present work Pratt et al.[33] 1 0.2 4.923 5.587 –11.88 0.5 4.902 5.525 –11.27 0.8 4.747 5.272 –9.96 0.95 4.741 5.162 –8.16 10 0.2 7.486 8.308 –9.90 0.5 5.953 6.405 –7.06 0.8 4.829 5.060 –4.56 0.95 4.495 4.573 –1.71 100 0.2 7.896 8.130 –2.88 0.5 4.964 5.018 –1.07 0.8 2.939 2.970 –1.05 0.95 1.925 1.963 –1.95 200 0.2 7.614 7.586 0.37 0.5 4.402 4.377 0.58 0.8 2.352 2.354 –0.08 0.95 1.366 1.380 –1.02 1000 0.2 7.687 7.515 2.29 0.5 3.953 3.879 1.91 0.8 1.773 1.762 0.65 0.95 0.815 0.818 –0.36 2000 0.2 8.387 8.303 1.01 0.5 4.507 4.451 1.26 0.8 2.118 2.112 0.31 0.95 0.941 0.947 –0.68 表 3 中性C原子轫致辐射形状函数, 并与Kissel等[57]的结果进行对比
Table 3. Comparison of the bremsstrahlung shape function for the neutral C atom with the results of Kissel et al[57].
$ T_1/ {\rm keV} $ $ E_{\mathrm{p}} / T_1 $ $ \theta/ (°)$ Shape function/sr–1 Diff/% Present work Kissel et al.[57] 10 0.6 0 0.0487 0.0498 –2.21 30 0.0783 0.0796 –1.68 90 0.0968 0.0962 0.60 120 0.0611 0.0602 1.44 180 0.0232 0.0232 –0.01 50 0.6 0 0.0877 0.0843 3.98 30 0.1386 0.1389 –0.23 90 0.0747 0.0746 0.19 120 0.0363 0.0360 0.83 180 0.0150 0.0149 0.61 100 0.6 0 0.1392 0.1380 0.87 30 0.2005 0.2019 –0.68 90 0.0558 0.0556 0.42 120 0.0244 0.0243 0.36 180 0.0111 0.0110 0.65 -
[1] Buǐmistrov V M, Trakhtenberg L I 1975 J. Exp. Theor. Phys. 42 54
[2] Amus'ya M Y, Baltenkov A S, Paiziev A A 1976 JETP Lett. 24 332
[3] Korol A V, Obolensky O I, Solov'yov A V, Solovjev I A 2001 J. Phys. B: At. Mol. Opt. Phys. 34 1589Google Scholar
[4] Lea S M, Silk J, Kellogg E, Murray S 1973 Astrophys. J. 184 L105Google Scholar
[5] Cavaliere A, Fusco-Femiano R 1976 Astron. Astrophys. 49 137
[6] Hannestad S, Raffelt G 1998 Astrophys. J. 507 339Google Scholar
[7] Wang W Y, Lu J G, Tong H, Ge M Y, Li Z S, Men Y P, Xu R X 2017 Astrophys. J. 837 81Google Scholar
[8] Steane A M 2024 Phys. Rev. D 109 063032Google Scholar
[9] Maydanyuk S P, Zhang P M, Zou L P 2016 Phys. Rev. C 93 014617Google Scholar
[10] Omar A, Andreo P, Poludniowski G 2018 Radiat. Phys. Chem. 148 73Google Scholar
[11] Jakubassa-Amundsen D H 2021 arXiv: 2103.06034 [physics. atom-ph]
[12] Li L, An Z, Zhu J J, Tan W J, Sun Q, Liu M T 2019 Phys. Rev. A 99 052701Google Scholar
[13] Kornev A S, Zon B A, Chernov V E, Amusia M Y, Kubelík P, Ferus M 2022 Atoms 10 86Google Scholar
[14] Milstein A I, Salnikov S G, Kozlov M G 2023 Nucl. Instrum. Methods Phys. Res., Sect. B 539 9Google Scholar
[15] Guazzotto L, Betti R 2019 Plasma Phys. Control. Fusion 61 085028Google Scholar
[16] Bhaskar B S, Koivisto H, Tarvainen O, Thuillier T, Toivanen V, Kalvas T, Izotov I, Skalyga V, Kronholm R, Marttinen M 2021 Plasma Phys. Control. Fusion 63 095010Google Scholar
[17] Bone T, Sedwick R 2024 Acta Astronaut. 220 356Google Scholar
[18] Batani D, Antonelli L, Barbato F, et al. 2018 Nucl. Fusion 59 032012Google Scholar
[19] Ren K, Wu J F, Dong J J, Li Y R, Huang T X, Zhao H, Liu Y Y, Cao Z R, Zhang J Y, Mu B Z, Yan J, Jiang W, Pu Y D, Li Y L, Peng X S, Xu T, Yang J M, Lan K, Ding Y K, Jiang S E, Wang F 2021 Sci. Rep. 11 14492Google Scholar
[20] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar
[21] Boozer A H 2005 Rev. Mod. Phys. 76 1071Google Scholar
[22] Munirov V R, Fisch N J 2023 Phys. Rev. E 107 065205Google Scholar
[23] Underwood C I D, Baird C D, Murphy C D, et al. 2020 Plasma Phys. Control. Fusion 62 124002Google Scholar
[24] Singh S, Armstrong C D, Kang N, et al. 2021 Plasma Phys. Control. Fusion 63 035004Google Scholar
[25] Benitez J, Todd D, Xie D 2022 J. Phys.: Conf. Ser. 2244 012083Google Scholar
[26] Rong X, Du Y, Ljungberg M, Rault E, Vandenberghe S, Frey E C 2012 Med. Phys. 39 2346Google Scholar
[27] Roshan H R, Mahmoudian B, Gharepapagh E, Azarm A, Islamian J P 2016 Appl. Radiat. Isot. 108 124Google Scholar
[28] Uribe C F, Esquinas P L, Gonzalez M, Celler A 2016 Phys. Med. 32 691Google Scholar
[29] Porter C A, Bradley K M, Hippeläinen E T, Walker M D, McGowan D R 2018 EJNMMI Res. 8 1Google Scholar
[30] Tijani S A, Al-Hadeethi Y, Sambo I, Balogun F A 2018 J. Radiol. Prot. 38 N44Google Scholar
[31] Bethe H, Heitler W 1934 Proc. R. Soc. London, Ser. A 146 83Google Scholar
[32] Tseng H K, Pratt R H 1971 Phys. Rev. A 3 100Google Scholar
[33] Pratt R H, Tseng H K, Lee C M, Kissel L 1977 At. Data Nucl. Data Tables 20 175Google Scholar
[34] Poškus A 2018 Comput. Phys. Commun. 232 237Google Scholar
[35] Poškus A 2022 Comput. Phys. Commun. 278 108414Google Scholar
[36] Poškus A 2019 At. Data Nucl. Data Tables 129-130 101277Google Scholar
[37] Poškus A 2021 Nucl. Instrum. Methods Phys. Res., Sect. B 508 49Google Scholar
[38] Wu J Y, Wu Y, Qi Y Y, Wang J G, Janev R K, Zhang S B 2019 Phys. Rev. A 99 012705Google Scholar
[39] Wu J Y, Wu Y, Qi Y Y, Wang J G, Janev R K, Zhang S B 2019 Mon. Not. R. Astron. Soc. 486 141Google Scholar
[40] Wu J Y, Qi Y Y, Cheng Y J, Wu Y, Wang J G, Zhang S B 2020 Phys. Plasmas 27 043301Google Scholar
[41] Wu J Y, Cheng Y J, Poškus A, Wu Y, Wang J G, Zhang S B 2021 Phys. Rev. A 103 062802Google Scholar
[42] Avdonina N B, Pratt R H 1999 J. Phys. B: At. Mol. Opt. Phys. 32 4261Google Scholar
[43] Korol A V 1992 J. Phys. B: At. Mol. Opt. Phys. 25 L341Google Scholar
[44] Amusia M Y, Avdonina N B, Chernysheva L V, Kuchiev M Y 1985 J. Phys. B: Atom. Mol. Phys. 18 L791Google Scholar
[45] Korol A V, Lyalin A G, Solovy'ov A V, Avdonina N B, Pratt R H 2002 J. Phys. B: At. Mol. Opt. Phys. 35 1197Google Scholar
[46] Tseng H K, Pratt R H 1973 Phys. Rev. A 7 1502Google Scholar
[47] Mangiarotti A, Lauth W, Jakubassa-Amundsen D H, Klag P, Malafronte A A, Martins M N, Nielsen C F, Uggerhøj U I 2021 Phys. Lett. B 815 136113Google Scholar
[48] Groshev M E, Zaytsev V A, Yerokhin V A, Hillenbrand P M, Litvinov Y A, Shabaev V M 2022 Phys. Rev. A 105 052803Google Scholar
[49] Yerokhin V A, Surzhykov A 2010 Phys. Rev. A 82 062702Google Scholar
[50] Yerokhin V A, Surzhykov A, Märtin R, Tashenov S, Weber G 2012 Phys. Rev. A 86 032708Google Scholar
[51] García-Alvarez J A, Fernández-Varea J M, Vanin V R, Maidana N L 2018 J. Phys. B: At. Mol. Opt. Phys. 51 225003Google Scholar
[52] Li L, An Z, Zhu J J, Lin W P, Williams S 2021 Nucl. Instrum. Methods Phys. Res., Sect. B 506 15Google Scholar
[53] Gu M F 2008 Can. J. Phys. 86 675Google Scholar
[54] Rodrigues G C, Indelicato P, Santos J P, Patté P, Parente F 2004 At. Data Nucl. Data Tables 86 117Google Scholar
[55] Kramida A, Yu Ralchenko, Reader J, and NIST ASD Team 2024 NIST Atomic Spectra Database (Ver. 5.12) https://physics.nist.gov/asd [2025-1-6]
[56] Lee C M, Kissel L, Pratt R H, Tseng H K 1976 Phys. Rev. A 13 1714Google Scholar
[57] Kissel L, Quarles C A, Pratt R H 1983 At. Data Nucl. Data Tables 28 381Google Scholar
计量
- 文章访问数: 255
- PDF下载量: 8
- 被引次数: 0