搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁场对超热电子产生Kα辐射对比度的影响

肖杨杨 王晓方

引用本文:
Citation:

磁场对超热电子产生Kα辐射对比度的影响

肖杨杨, 王晓方

Effect of magnetic field on contrast of Kα emission generated by superthermal electrons

XIAO Yangyang, WANG Xiaofang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 超强激光与物质相互作用产生的超热电子在物质中输运产生Kα特征线辐射和轫致辐射.Kα辐射的对比度, 即Kα特征线谱与其附近轫致辐射连续谱的强度比, 依赖于轫致辐射的方向性, 与超热电子的能量和传输相关. 本文采用蒙特卡罗模拟研究了对超热电子束有准直作用的轴向匀强磁场和高斯分布环形磁场提高铜Kα辐射对比度的可能性. 模拟和分析表明, 轴向匀强磁场无法增强轫致辐射的方向性, 不能有效提高Kα辐射的对比度. 对于高斯分布环形磁场, 当入射电子能谱具有玻尔兹曼分布时, 由于含有大量低能电子且它们的轫致辐射方向性较差, Kα辐射对比度的增幅不大; 而截掉低能部分的玻尔兹曼能谱电子束或能量较高的单能电子束入射时, 高斯分布环形磁场能大幅提高沿入射电子束后向的Kα辐射对比度. 对于能量为200—1000 keV范围的超热电子, 峰值为100 T左右的环形磁场有利于提高Kα辐射的对比度.
    The interaction of a high-intensity laser with a solid target generates a large number of superthermal electrons. When these superthermal electrons are transported in the target material, X-rays, including Kα line and bremsstrahlung emissions are produced. The contrast of Kα line emission, i.e. the intensity of Kα line relative to the intensity of bremsstrahlung continua around the Kα line, depends on the anisotropy of the bremsstrahlung emission and is related to the energy and transportation of the superthermal electrons. In the past, some researchers used axial or annular magnetic fields to collimate superthermal electrons, but whether these magnetic fields can enhance the contrast of Kα emission has not been studied. In the present work, the effect of an axially uniform magnetic field or an annular magnetic field with a Gaussian distribution on the contrast of Cu Kα emission is investigated by Monte Carlo simulations. The simulation results and analysis show that the axially uniform magnetic field cannot strengthen the anisotropy of the bremsstrahlung emission, so it cannot enhance the contrast of Kα emission efficiently. For the annular magnetic field with a Gaussian distribution, when an electron beam with a Boltzmann energy distribution is incident, due to the weak anisotropy of bremsstrahlung emission by low-energy electrons in the electron beam, the increase of Kα emission contrast is small. When an electron beam with a Boltzmann energy distribution, in which the low-energy part is cut off, or a mono-energetic electron beam is incident, the annular magnetic field with a Gaussian distribution significantly enhances the contrast of Kα emission in the back direction of the electron beam incidence. For an incident electron beam with an energy value in a range of 200–1000 keV, an annular magnetic field with a Gaussian distribution and a peak value of approximately 100 T is optimal for enhancing the contrast of Kα emission. Considering the existing experiments on generating annular magnetic fields and non-Boltzmann energy distribution superthermal electrons, it is possible to generate higher contrast Kα emissions with the enhancement of magnetic field in future experiments.
  • 图 1  模拟中坐标系和角度定义

    Fig. 1.  The coordinate and detection angle defined in the simulation.

    图 2  $ {T_{\text{h}}} = 600{\text{ keV}} $的玻尔兹曼能量分布电子束入射产生的X射线谱

    Fig. 2.  X-ray spectra produced by Boltzmann distribution electron incidence with $ {T_{\text{h}}} = 600{\text{ keV}} $.

    图 3  靶中无磁场(WOB)或存在$ {{\boldsymbol{B}}_{\boldsymbol{z}}} = 100{\text{ T}} $时的Kα辐射对比度 (a) $ {T_{\text{h}}} = 600{\text{ keV}} $的玻尔兹曼能量分布电子束入射; (b) $ {E_{\text{k}}} = 600{\text{ keV}} $的单能电子束入射

    Fig. 3.  Contrasts of Kα emission without a magnetic field (WOB) or with $ {{\boldsymbol{B}}_{\boldsymbol{z}}} = 100{\text{ T}} $ in the target: (a) Boltzmann distribution electron incidence with $ {T_{\text{h}}} = 600{\text{ keV}} $; (b) mono-energetic electron incidence with $ {E_{\text{k}}} = 600{\text{ keV}} $.

    图 4  电子在z方向匀强磁场中运动示意图

    Fig. 4.  Schematic diagram of the motion of an electron in a z-direction uniform magnetic field.

    图 5  (a) 高斯分布的环形磁场的示意图; (b) 环形磁场在x-y平面内的分布; (c) 磁场准直电子的示意图

    Fig. 5.  (a) Schematic diagram of an annular magnetic field with a Gaussian distribution; (b) distribution of the annular magnetic field in the x-y plane; (c) schematic diagram of the collimation of electrons by the magnetic field.

    图 6  玻尔兹曼能量分布电子束入射的模拟结果 (a) $ {T_{\text{h}}} = 200{\text{ keV}} $和$ 600{\text{ keV}} $时不同方向的$ {C_{{{{\mathrm{K}}\alpha }}}} $; (b) $ \theta = {135^ \circ } $的$ {C_{{{{\mathrm{K}}\alpha }}}} $与$ {T_{\text{h}}} $的关系

    Fig. 6.  Simulation results of Boltzmann distribution electron incidences: (a) $ {C_{{{{\mathrm{K}}\alpha }}}} $ in different directions for $ {T_{\text{h}}} = 200{\text{ keV}} $ and 600 keV, respectively; (b) the dependence of $ {C_{{{{\mathrm{K}}\alpha }}}} $ at $ \theta = {135^ \circ } $ on $ {T_{\text{h}}} $.

    图 7  单能电子束入射时的模拟结果 (a) $ {E_{\text{k}}} = 200{\text{ keV}} $和$ 600{\text{ keV}} $不同方向的$ {C_{{{{\mathrm{K}}\alpha }}}} $; (b) $ \theta = {135^ \circ } $的$ {C_{{{{\mathrm{K}}\alpha }}}} $和$ {R_{{\text{in}}}} $与$ {E_{\text{k}}} $的关系

    Fig. 7.  Simulation results of mono-energetic electron incidences: (a) $ {C_{{{{\mathrm{K}}\alpha }}}} $ of $ {E_{\text{k}}} = 200{\text{ keV}} $ and $ 600{\text{ keV}} $ in different directions; (b) dependence of $ {C_{{{{\mathrm{K}}\alpha }}}} $ and $ {R_{{\text{in}}}} $at $ \theta = {135^ \circ } $ on $ {E_{\text{k}}} $.

    图 8  $ {T_{\text{h}}} = 600{\text{ keV}} $的玻尔兹曼能量分布的电子中能量大于500 keV的电子入射时不同探测角度的$ {C_{{{{\mathrm{K}}\alpha }}}} $

    Fig. 8.  $ {C_{{{{\mathrm{K}}\alpha }}}} $ at different detection angles for Boltzmann distribution electron incidence with $ {T_{\text{h}}} = 600{\text{ keV}} $ and electron energy higher than 500 keV.

    图 9  单能电子束入射时, 无磁场和存在磁场$ {{\boldsymbol{B}}_\phi } $条件下的模拟结果 (a) $ {E_{\text{k}}} = 600{\text{ keV}} $时靶后表面的电子数密度分布; (b) 电子数密度分布的半高全宽与$ {E_{\text{k}}} $的关系

    Fig. 9.  Simulation results for mono-energetic electron incidence without a magnetic field and with $ {{\boldsymbol{B}}_\phi } $: (a) Distribution of the electron number density on the rear surface of the target for $ {E_{\text{k}}} = 600{\text{ keV}} $; (b) dependence of full width at half maximum of the distribution of the electron number density on $ {E_{\text{k}}} $.

    图 10  存在不同$ {B_0} $和$ {\sigma _{\text{f}}} $的环形磁场时$ \theta = {135^ \circ } $的Kα辐射的对比度$ {C_{{{{\mathrm{K}}\alpha }}}} $ (a) $ {\sigma _{\text{f}}} = 20{\text{ μm}} $时$ {C_{{{{\mathrm{K}}\alpha }}}} $与$ {B_0} $的关系; (b) $ {B_0} = 100{\text{ T}} $时$ {C_{{{{\mathrm{K}}\alpha }}}} $与$ {\sigma _{\text{f}}} $的关系

    Fig. 10.  Contrasts of Kα emission at $ \theta = {135^ \circ } $ versus $ {B_0} $ and $ {\sigma _{\text{f}}} $ of annular magnetic fields: (a) The dependence of $ {C_{{{{\mathrm{K}}\alpha }}}} $ on $ {B_0} $ with $ {\sigma _{\text{f}}} = 20{\text{ μm}} $; (b) the dependence of $ {C_{{{{\mathrm{K}}\alpha }}}} $ on $ {\sigma _{\text{f}}} $ with $ {B_0} = 100{\text{ T}} $.

    图 11  不同环形磁场下的电子轨迹

    Fig. 11.  Trajectories of electrons in different annular magnetic fields.

    图 12  能量为600 keV的单能电子束入射不同厚度的铜平面靶时$ \theta = {135^ \circ } $的Kα辐射对比度

    Fig. 12.  Contrasts of Kα emission at $ \theta = {135^ \circ } $ for 600 keV mono-energetic electron incidence versus planar target thickness.

  • [1]

    温贤伦, 洪伟, 谷渝秋, 何颖玲, 唐翠明, 王剑 2007 强激光与粒子束 19 1373

    Wen X L, Hong W, Gu Y Q, He Y L, Tang C M, Wang J 2007 High Power Laser and Particle Beams 19 1373

    [2]

    Gambari M, Clady R, Stolidi A, Utéza O, Sentis M, Ferré A 2020 Sci. Rep. 10 6766Google Scholar

    [3]

    Ivanov K A, Gavrilin I M, Volkov R V, Gavrilov S A, Savel Ev A B 2021 Laser Phys. Lett. 18 075401Google Scholar

    [4]

    Sawada H, Lee S, Shiroto T, Nagatomo H, Arikawa Y, Nishimura H, Ueda T, Shigemori K, Sunahara A, Ohnishi N, Beg F N, Theobald W, Pérez F, Patel P K, Fujioka S 2016 Appl. Phys. Lett. 108 254101Google Scholar

    [5]

    Park H S, Chambers D M, Chung H K, Clarke R J, Eagleton R, Giraldez E, Goldsack T, Heathcote R, Izumi N, Key M H, King J A, Koch J A, Landen O L, Nikroo A, Patel P K, Price D F, Remington B A, Robey H F, Snavely R A, Steinman D A, Stephens R B, Stoeckl C, Storm M, Tabak M, Theobald W, Town R P J, Wickersham J E, Zhang B B 2006 Phys. Plasmas 13 056309Google Scholar

    [6]

    Kritcher A L, Neumayer P, Castor J, Döppner T, Falcone R W, Landen O L, Lee H J, Lee R W, Holst B, Redmer R, Morse E C, Ng A, Pollaine S, Price D, Glenzer S H 2009 Phys. Plasmas 16 056308Google Scholar

    [7]

    Westover B, MacPhee A, Chen C, Hey D, Ma T, Maddox B, Park H S, Remington B, Beg F N 2010 Phys. Plasmas 17 082703Google Scholar

    [8]

    Chen L M, Kando M, Xu M H, Li Y T, Koga J, Chen M, Xu H, Yuan X H, Dong Q L, Sheng Z M, Bulanov S V, Kato Y, Zhang J, Tajima T 2008 Phys. Rev. Lett. 100 045004Google Scholar

    [9]

    蔡涓涓, 黄文忠, 谷渝秋, 董克攻, 吴玉迟, 朱斌, 王晓方 2011 强激光与粒子束 23 1082Google Scholar

    Cai J J, Huang W Z, Gu Y Q, Dong K G, Wu Y C, Zhu B, Wang X F 2011 High Power Laser Part. Beams 23 1082Google Scholar

    [10]

    Azamoum Y, Tcheremiskine V, Clady R, Ferré A, Charmasson L, Utéza O, Sentis M 2018 Sci. Rep. 8 4119Google Scholar

    [11]

    Tillman C, Mercer I, Svanberg S, Herrlin K 1996 J. Opt. Soc. Am. B 13 209Google Scholar

    [12]

    陆中伟, 王晓方 2019 物理学报 68 035202Google Scholar

    Lu Z W, Wang X F 2019 Acta Phys. Sin. 68 035202Google Scholar

    [13]

    Lévy A, Dorchies F, Audebert P, Chalupský J, Hájková V, Juha L, Kaempfer T, Sinn H, Uschmann I, Vyšín L, Gaudin J 2010 Appl. Phys. Lett. 96 151114Google Scholar

    [14]

    Wang R R, An H H, Xie Z Y, Wang W 2018 Phys. Plasmas 25 053303Google Scholar

    [15]

    王瑞荣, 陈伟民, 董佳钦, 熊俊, 傅思祖 2008 光学学报 28 1220Google Scholar

    Wang R R, Chen W M, Dong J Q, Xiong J, Fu S Z 2008 Acta Opt. Sin. 28 1220Google Scholar

    [16]

    Zhao J C, Zheng J H, Cao L H, Zhao Z Q, Li S, Gu Y Q, Liu J 2016 Phys. Plasmas 23 093102Google Scholar

    [17]

    Yoshioka A, Yamaguchi Y, Tamura K, Shimizu R 2004 Surf. Interface Anal. 36 1417Google Scholar

    [18]

    徐妙华, 梁天骄, 张杰 2006 物理学报 55 2357Google Scholar

    Xu M H, Liang T J, Zhang J 2006 Acta Phys. Sin. 55 2357Google Scholar

    [19]

    Xiao Y Y, Wang X F 2024 Phys. Plasmas 31 073302Google Scholar

    [20]

    蔡达锋, 王利娟, 王剑, 郑志坚 2009 原子与分子物理学报 26 535

    Cai D F, Wang L J, Wang J, Zheng Z J 2009 J. At. Mol. Phys. 26 535

    [21]

    Bailly-Grandvaux M, Santos J J, Bellei C, Forestier-Colleoni P, Fujioka S, Giuffrida L, Honrubia J J, Batani D, Bouillaud R, Chevrot M, Cross J E, Crowston R, Dorard S, Dubois J L, Ehret M, Gregori G, Hulin S, Kojima S, Loyez E, Marquès J R, Morace A, Nicolaï P, Roth M, Sakata S, Schaumann G, Serres F, Servel J, Tikhonchuk V T, Woolsey N, Zhang Z 2018 Nat. Commun. 9 102Google Scholar

    [22]

    Malko S, Vaisseau X, Perez F, Batani D, Curcio A, Ehret M, Honrubia J, Jakubowska K, Morace A, Santos J J, Volpe L 2019 Sci. Rep. 9 14061Google Scholar

    [23]

    Xu H, Yang X H, Sheng Z M, McKenna P, Ma Y Y, Zhuo H B, Yin Y, Ren C, Zhang J 2019 Nucl. Fusion 59 126024Google Scholar

    [24]

    Reich Ch, Gibbon P, Uschmann I, Förster E 2000 Phys. Rev. Lett. 84 4846Google Scholar

    [25]

    Šmíd M, Renner O, Colaitis A, Tikhonchuk V T, Schlegel T, Rosmej F B 2019 Nat. Commun. 10 4212Google Scholar

    [26]

    Khattak F Y, Garcia Saiz E, Gibbon P, Karmakar A, Dzelzainis T W J, Lewis C L S, Robinson A P L, Zepf M, Riley D 2012 Eur. Phys. J. D 66 298Google Scholar

    [27]

    Salvat F, Fernández-Varea J, Sempau J 2008 PENELOPE-2008, A Code System for Monte Carlo Simulation of Electron and Photon Transport (Issy-les-Moulineau: OECD/NEA Data Bank

    [28]

    Li B Y, Tian C, Zhang Z M, Zhang F, Shan L Q, Zhang B, Zhou W M, Zhang B H, Gu Y Q 2016 Phys. Plasmas 23 093121Google Scholar

    [29]

    Green J S, Ovchinnikov V M, Evans R G, Akli K U, Azechi H, Beg F N, Bellei C, Freeman R R, Habara H, Heathcote R, Key M H, King J A, Lancaster K L, Lopes N C, Ma T, MacKinnon A J, Markey K, McPhee A, Najmudin Z, Nilson P, Onofrei R, Stephens R, Takeda K, Tanaka K A, Theobald W, Tanimoto T, Waugh J, Van Woerkom L, Woolsey N C, Zepf M, Davies J R, Norreys P A 2008 Phys. Rev. Lett. 100 015003Google Scholar

    [30]

    Salzmann D, Reich C, Uschmann I, Förster E, Gibbon P 2002 Phys. Rev. E 65 036402Google Scholar

    [31]

    Toncian T, Wang C, McCary E, Meadows A, Arefiev A V, Blakeney J, Serratto K, Kuk D, Chester C, Roycroft R, Gao L, Fu H, Yan X Q, Schreiber J, Pomerantz I, Bernstein A, Quevedo H, Dyer G, Ditmire T, Hegelich B M 2016 Matter Radiat. Extremes 1 82Google Scholar

    [32]

    Roet D, Ceballos C, Van Espen P 2006 Nucl. Instrum. Methods Phys. Res. B 251 317Google Scholar

    [33]

    Braenzel J, Andreev A A, Abicht F, Ehrentraut L, Platonov K, Schnurer M 2017 Phys. Rev. Lett. 118 014801Google Scholar

  • [1] 闫彤, 刘爱华, 焦利光. 碳原子和离子轫致辐射过程中电子屏蔽效应研究. 物理学报, doi: 10.7498/aps.74.20241638
    [2] 李博, 李玲, 朱敬军, 林炜平, 安竹. 采用薄靶方法测量低能电子致Al, Ti, Cu, Ag, Au元素K壳层电离截面与L壳层特征X射线产生截面. 物理学报, doi: 10.7498/aps.71.20220162
    [3] 寻之朋, 郝大鹏. 含复杂近邻的二维正方格子键渗流的蒙特卡罗模拟. 物理学报, doi: 10.7498/aps.71.20211757
    [4] 王丽敏, 段丙皇, 许献国, 李昊, 陈治军, 杨坤杰, 张硕. 基于蒙特卡罗模拟研究锆钛酸铅镧材料的中子辐照损伤. 物理学报, doi: 10.7498/aps.71.20212041
    [5] 田自宁, 欧阳晓平, 陈伟, 王雪梅, 邓宁, 刘文彪, 田言杰. 基于虚拟源原理的源边界参数蒙特卡罗反演技术. 物理学报, doi: 10.7498/aps.68.20191095
    [6] 钱宇瑞, 吴英, 杨夏童, 陈秋香, 尤俊栋, 王宝义, 况鹏, 张鹏. 8-9.5 keV正电子致Ti的K壳层电离截面的实验研究. 物理学报, doi: 10.7498/aps.67.20180666
    [7] 华钰超, 董源, 曹炳阳. 硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟. 物理学报, doi: 10.7498/aps.62.244401
    [8] 兰木, 向钢, 辜刚旭, 张析. 一种晶体表面水平纳米线生长机理的蒙特卡罗模拟研究. 物理学报, doi: 10.7498/aps.61.228101
    [9] 樊小辉, 赵兴宇, 王丽娜, 张丽丽, 周恒为, 张晋鲁, 黄以能. 分子串模型中空间弛豫模式的弛豫动力学的蒙特卡罗模拟. 物理学报, doi: 10.7498/aps.60.126401
    [10] 陈杰, 鲁习文. 基于磁荷面分布的舰船磁场预测方法. 物理学报, doi: 10.7498/aps.58.3839
    [11] 汪津, 华杰, 丁桂英, 常喜, 张刚, 姜文龙. 磁场作用下的有机电致发光. 物理学报, doi: 10.7498/aps.58.7272
    [12] 张雯. 磁场微重力效应的研究. 物理学报, doi: 10.7498/aps.58.2405
    [13] 陈珊, 吴青云, 陈志高, 许桂贵, 黄志高. ZnO1-xCx稀磁半导体的磁特性的第一性原理和蒙特卡罗研究. 物理学报, doi: 10.7498/aps.58.2011
    [14] 熊开国, 封国林, 胡经国, 万仕全, 杨杰. 气候变化中高温破纪录事件的蒙特卡罗模拟研究. 物理学报, doi: 10.7498/aps.58.2843
    [15] 高飞, 山田亮子, 渡边光男, 刘华锋. 应用蒙特卡罗模拟进行正电子发射断层成像仪散射特性分析. 物理学报, doi: 10.7498/aps.58.3584
    [16] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用. 物理学报, doi: 10.7498/aps.57.6030
    [17] 张助华, 郭万林, 郭宇锋. 轴向磁场对碳纳米管电子性质的影响. 物理学报, doi: 10.7498/aps.55.6526
    [18] 和青芳, 徐 征, 刘德昂, 徐叙瑢. 蒙特卡罗方法模拟薄膜电致发光器件中碰撞离化的作用. 物理学报, doi: 10.7498/aps.55.1997
    [19] 王志军, 董丽芳, 尚 勇. 电子助进化学气相沉积金刚石中发射光谱的蒙特卡罗模拟. 物理学报, doi: 10.7498/aps.54.880
    [20] 王建华, 金传恩. 蒙特卡罗模拟在辉光放电鞘层离子输运研究中的应用. 物理学报, doi: 10.7498/aps.53.1116
计量
  • 文章访问数:  417
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-05
  • 修回日期:  2025-04-17
  • 上网日期:  2025-04-29

/

返回文章
返回