搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于虚拟源原理的源边界参数蒙特卡罗反演技术

田自宁 欧阳晓平 陈伟 王雪梅 邓宁 刘文彪 田言杰

引用本文:
Citation:

基于虚拟源原理的源边界参数蒙特卡罗反演技术

田自宁, 欧阳晓平, 陈伟, 王雪梅, 邓宁, 刘文彪, 田言杰

Source boundary parameter of Monte Carlo inversion technology based on virtual source principle

Tian Zi-Ning, Ouyang Xiao-Ping, Chen Wei, Wang Xue-Mei, Deng Ning, Liu Wen-Biao, Tian Yan-Jie
PDF
HTML
导出引用
  • 在就地γ谱仪搜索扫描测量“热粒子”、“放射性汇集点”、“放射性汇集区”过程中, 只能给出污染源的大概位置, 不能给出源的污染深度等边界参数. 本文主要对虚拟技术在就地γ谱仪搜索扫描测量细化污染源边界中的应用进行了研究. 将就地γ谱仪测量对象简化成衰减层 + 放射性热区(测量目标源) + 衰减层 + 干扰源的四层理论模型, 运用虚拟技术将源项层虚拟成点源, 进一步简化了理论模型, 使用蒙特卡罗方法模拟计算探测效率与峰谷比等参数, 最后使用最小二乘法使模拟计算结果反演逼近源项实际参数, 从而建立了源边界参数反演计算的理论方法及步骤. 理论研究和实验结果一致, 验证了所建立的计算模型和技术方法是正确可靠的. 目前, 对于均匀分布的放射性核素, 该技术已经能够准确确定污染区域深度分布等边界参数, 从而在治理时达到废物处置减容的目的. 同时, 该技术对于禁核试核查目标核弹头惰层厚度参数的确定也具有重大的参考价值.
    In the in situ γ spectrometer based measurement of " hot particular”, " radioactive collection point” and " radioactive collection area”, only the position of the pollution source can be located roughly, but its boundary parameters such as the thickness of pollution source cannot be given. In this paper, the application of virtual technology to the scanning of γ spectrometer is studied. We convert γ spectrometer measurement objects into a four-layer theoretical model, which are attenuation thickness + radioactive hot area + attenuation thickness + disturb source. Then, the source item layer is virtualized into a point source by using virtual technology. So, the theoretical model is further simplified. Then the detection efficiency and peak/valley ratio parameter of source term are simulated by Monte Carlo method. Finally, the source term parameters are retrieved by using the least square method, and thus establishing the theoretical method and procedure of inversion calculation of source boundary parameters. In this paper, the theoretical and experimental results are shown to be consistent with each other. So, this method is verified to be correct and practicable. Currently, the method can accurately determine the depth distribution parameters of radioactive contamination area for uniformly distributed radio nuclides. In conclusion, the technical achievements can be used to accurately determine the boundary range of the radioactive hot zone, thus realizing the purpose of reducing the waste disposal capacity during the treatment. At the same time, the determination of the inert layer thickness parameters of the target nuclear warhead of Nuclear Test Ban Treaty has a significant reference value.
      通信作者: 田自宁, tzn1019@126.com
    • 基金项目: 国家自然科学基金(批准号: 11405134)资助的课题
      Corresponding author: Tian Zi-Ning, tzn1019@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11405134)
    [1]

    熊宗华, 亢武, 龚建, 胡广春, 向永春, 裴永全 2003 物理学报 52 1Google Scholar

    Xiong Z H, Kang W, Gong J, Hu G C, Xiang Y C, Pei Y Q 2003 Atca Phys. Sin. 52 1Google Scholar

    [2]

    Kováik A, Sy′kora I, Povinec P P 2013 J. Radioanal. Nucl. Chem. 298 665Google Scholar

    [3]

    Peyres V, García-Torao E 2007 Nucl. Instr. Meth. Phys. Res. A 580 296Google Scholar

    [4]

    田自宁, 欧阳晓平, 殷经鹏, 张洋, 杨文静 2013 原子能科学技术 47 1411Google Scholar

    Tian Z N, Ouyang X P, Yin J P, Zhang Y, Yang W J 2013 Atomic Energy Sci. Technol. 47 1411Google Scholar

    [5]

    Elanique A, Marzocchi O, Leone D, Hegenbart L, Breustedt B, Oufni L 2012 Appl. Radiat. Isot. 70 538Google Scholar

    [6]

    Budjá D, Heisel M, Maneschg W, Simgen H 2009 Appl. Radiat. Isot. 67 706Google Scholar

    [7]

    Gasparro J, Hult M, Johnston P N, Tagziria H 2008 Nucl. Instr. Meth. Phys. Res. A 594 196Google Scholar

    [8]

    Huya N Q, Binhb D Q, An V X 2007 Nucl. Instr. Meth. Phys. Res. A 573 384Google Scholar

    [9]

    Huy N Q 2010 Nucl. Instr. Meth. Phys. Res. A 621 390Google Scholar

    [10]

    Luís R, Bento J, Carvalhal G, Nogueira P, Silva L, Teles P, Vaz P 2010 Nucl. Instr. Meth. Phys. Res. A 623 1014Google Scholar

    [11]

    Mohammadi M A, Abdi M R, Kamali M, Mostajaboddavati M, Zare M R 2011 Appl. Radiat. Isot. 69 521Google Scholar

    [12]

    Presler O, German U, Pelled O, Alfassi Z B 2004 Appl. Radiat. Isot. 60 213Google Scholar

    [13]

    Mahling S, Orion I, Alfassi Z B 2006 Nucl. Instr. Meth. Phys. Res. A 557 544Google Scholar

    [14]

    熊文彬, 仇春华, 段天英, 刘浩杰, 潘君艳, 陈海涛, 刘进辉 2011 原子能科学技术 45 999

    Xiong W B, Qiu C H, Duan T Y, Liu H J, Pan J Y, Chen H T, Liu J H 2011 Atomic Energy Sci. Technol. 45 999

    [15]

    Noteal A 1971 Nucl. Instr. Meth. 91 513Google Scholar

    [16]

    田自宁, 欧阳晓平, 曾鸣, 成智威 2013 物理学报 62 162902Google Scholar

    Tian Z N, Ouyang X P, Zeng M, Cheng Z W 2013 Acta Phys. Sin. 62 162902Google Scholar

    [17]

    田自宁, 陈伟, 韩斌, 田言杰, 刘文彪, 冯天成, 欧阳晓平 2016 物理学报 65 062901Google Scholar

    Tian Z N, Chen W, Han B, Tian Y J, Liu W B, Feng T C, Ouyang X P 2016 Acta Phys. Sin. 65 062901Google Scholar

  • 图 1  源边界参数反演理论模型

    Fig. 1.  The inversion theory model of source boundary parameters.

    图 2  探测模式1

    Fig. 2.  The detection mode 1.

    图 3  探测模式2

    Fig. 3.  The detection mode 2.

    图 4  探测模式1的MCNP程序计算模型

    Fig. 4.  Calculation model of MCNP procedure for detection mode 1.

    图 5  探测模式2的MCNP程序计算模型

    Fig. 5.  Calculation model of MCNP procedure for detection mode 2.

    表 1  探测模式1实验能谱峰计数及处理结果

    Table 1.  Energy peak count of experimental spectrum and process results for detection mode 1.

    测量对象测量时长t/105 sN241 (54—57 keV)N241 (59.54 keV)N239 (51.62, 129 keV)A/104 Bq
    241Am239Pu
    探测模式13.16432513625339979
    239Pu体源2.0075248200239711, 527174.5618.7
    下载: 导出CSV

    表 2  探测模式2实验能谱峰计数及处理结果

    Table 2.  Energy peak count of experimental spectrum and process results for detection mode 2.

    测量对象测量时长 t/105 sN241 (26.4 keV)N241 (54—57 keV)N241 (59.54 keV)A/× 104 Bq
    26.4 keV59.54 keV
    探测模式24.002400509531180659645368.168.91
    241Am点源0.5654160024653314567.748.38
    241Am体源0.8004534627457730.4230.532
    下载: 导出CSV

    表 3  等效虚拟点源探测效率及峰谷比

    Table 3.  The detection efficiency and peak/valley of equivalent virtual point source.

    h/cm${\varepsilon _{241}}(h)$/10–3${\varepsilon _{239}}(h)$/10–3A241/104 BqA239/105 BqQ${N}/{ { {N_{\rm v}} } }(h)$
    –1.2524.324.60.9210.4975.48.05
    –1.6017.919.51.240.6295.06.99
    –2.0012.915.11.730.8104.76.12
    –2.409.4511.92.361.034.45.44
    –2.807.009.453.191.304.14.92
    –3.205.247.604.261.613.84.51
    –3.603.976.165.621.983.54.18
    –3.803.475.566.452.203.44.04
    –4.003.035.047.372.433.33.90
    下载: 导出CSV

    表 4  不同组合下等效虚拟点的均方偏差计算数据

    Table 4.  The mean square deviation calculation data of equivalent virtual point at different combination.

    wh/cm$\varepsilon (h)$/10–3${\varepsilon ^*}(h)$/10–3${N}/{ { {N_{\rm v}} } }(h)$X2/10–3X3/10–3X1$\sigma (X)$
    0.10–1.2524.324.68.05
    0.90–3.205.247.604.517.159.304.870.177
    0.90–3.603.976.164.186.008.014.560.308
    0.90–3.803.475.564.045.557.474.440.385
    0.90–4.003.035.043.905.166.994.310.458
    0.10–1.6017.919.56.99
    0.90–3.205.247.604.516.518.794.760.217
    0.90–3.603.976.164.185.367.504.460.396
    0.90–3.803.475.564.044.916.964.330.479
    0.90–4.003.035.043.904.526.484.210.554
    0.10–2.0012.915.16.12
    0.90–3.205.247.604.516.018.354.670.277
    0.90–3.603.976.164.184.867.064.370.474
    0.90–3.803.475.564.044.416.524.240.559
    0.90–4.003.035.043.904.026.044.120.635
    0.10–2.409.4511.95.44
    0.90–3.205.247.604.515.668.034.610.327
    0.90–3.603.976.164.184.526.744.300.530
    0.90–3.803.475.564.044.066.204.180.616
    0.90–4.003.035.043.903.675.724.050.693
    下载: 导出CSV

    表 5  不同组合下等效虚拟点的均方偏差计算数据

    Table 5.  The mean square deviation calculation data of equivalent virtual point at different combination.

    h/cmw$\sigma (X)$w$\sigma (X)$w$\sigma (X)$w$\sigma (X)$w$\sigma (X)$
    –1.250.100.200.300.400.50
    –3.200.900.1770.800.3550.700.6640.600.9880.501.32
    –3.600.900.3080.800.2230.700.5080.600.8480.501.20
    –3.800.900.3850.800.2010.700.4480.600.7920.501.15
    –4.000.900.4580.800.2100.700.3990.600.7440.501.11
    –1.600.100.200.300.400.50
    –3.200.900.2170.800.1950.700.3600.600.5680.500.784
    –3.600.900.3960.800.2100.700.2340.600.4350.500.669
    –3.800.900.4790.800.2620.700.2030.600.3840.500.622
    –4.000.900.5540.800.3180.700.1960.600.3430.500.583
    –2.000.100.200.300.400.50
    –3.200.900.2770.800.1870.700.1770.600.2560.500.371
    –3.600.900.4740.800.3280.700.2100.600.1810.500.272
    –3.800.900.5590.800.3990.700.2570.600.1780.500.238
    –4.000.900.6350.800.4650.700.3070.600.1930.500.215
    –2.400.100.200.300.400.50
    –3.200.900.3270.800.2640.700.2090.600.1730.500.167
    –3.600.900.5300.800.4350.700.3440.600.2610.500.195
    –3.800.900.6160.800.5100.700.4070.600.3090.500.225
    –4.000.900.6930.800.5770.700.4640.600.3560.500.257
    下载: 导出CSV
    h/cmw$\sigma (X)$w$\sigma (X)$w$\sigma (X)$w$\sigma (X)$
    –1.250.600.700.800.9
    –3.200.401.650.301.980.202.310.102.64
    –3.600.401.550.301.900.202.260.102.61
    –3.800.401.510.301.880.202.240.102.60
    –4.000.401.480.301.850.202.220.102.60
    –1.600.600.700.800.90
    –3.200.401.000.301.230.201.450.101.67
    –3.600.400.9100.301.160.201.400.101.65
    –3.800.400.8720.301.130.201.380.101.64
    –4.000.400.8390.301.100.201.370.101.63
    –2.000.600.700.800.90
    –3.200.400.4980.300.6300.200.7630.100.898
    –3.600.400.4100.300.5610.200.7160.100.875
    –3.800.400.3750.300.5330.200.6980.100.865
    –4.000.400.3470.300.5090.200.6810.100.857
    –2.400.600.700.800.90
    –3.200.400.1940.300.2440.200.3050.100.372
    –3.600.400.1690.300.1990.200.2670.100.351
    –3.800.400.1740.300.1860.200.2520.100.342
    –4.000.400.1860.300.1780.200.2400.100.335
    下载: 导出CSV

    表 6  体源参数的反演计算数据

    Table 6.  The inversion data of volume source parameters.

    hV/cm体源厚度/cm$\varepsilon ({h_{\rm{V}}})$
    /10–3
    ${\varepsilon ^*}({h_{\rm{V}}})$
    /10–2
    ${N}/{ { {N_{\rm v}} } }({h_{\rm{V} } })$$\sigma (X)$
    –2.800.804.540.6894.690.444
    –2.801.24.600.6964.740.431
    –2.801.64.700.7054.810.414
    –2.450.805.680.8185.030.231
    –2.451.25.760.8265.070.217
    –2.451.65.890.8375.160.200
    –2.452.06.050.8515.260.181
    –2.452.56.310.8745.410.159
    –2.453.06.650.9035.630.163
    –2.454.07.570.9816.240.289
    –2.454.98.781.087.120.539
    –2.000.807.621.035.580.188
    –2.001.27.751.045.640.212
    –2.001.67.931.055.750.248
    –2.002.08.171.075.880.295
    –2.002.58.551.106.110.373
    –2.003.09.031.146.410.474
    –2.004.010.41.257.350.769
    –1.500.8010.71.336.430.744
    –1.501.210.91.356.540.781
    –1.501.611.21.376.680.834
    –1.502.011.51.406.900.905
    –1.503.012.91.507.791.18
    –0.500.8022.02.3410.12.81
    下载: 导出CSV

    表 7  等效虚拟点源探测效率、峰谷比及活度比

    Table 7.  The detection efficiency, peak/valley and acvitiy ratio of equivalent virtual point source.

    h/cm${\varepsilon _{26.4\;{\rm{keV}}}}(h)$/10–3${\varepsilon _{59.54\;{\rm{keV}}}}(h)$/10–2A26.4 keV/104 BqA59.54 keV/104 BqA59.54 keV/A26.4 keV${N}/{ { {N_{\rm v}} } }(h)$
    0.8048.20014.40.05190.3186.1017.0
    0.4013.5008.790.18500.5232.8012.0
    04.0605.560.61500.8261.309.3
    –0.202.2604.481.11001.0300.908.4
    –0.401.2703.641.97001.2600.607.7
    –0.600.7172.983.49001.5400.407.1
    –0.800.4092.456.12001.8800.306.6
    下载: 导出CSV

    表 9  体源参数的反演计算数据

    Table 9.  The inversion data of volume source parameters.

    hV/cm体源
    厚度/cm
    ${\varepsilon ^*}({h_{\rm{V}}})$/
    10–2
    $\varepsilon ({h_{\rm{V}}})$/
    10–3
    ${N}/{ { {N_{\rm v}} } }({h_{\rm{V} } })$$\sigma (X)$ hV/cm体源
    厚度/cm
    ${\varepsilon ^*}({h_{\rm{V}}})$/
    10–2
    $\varepsilon ({h_{\rm{V}}})$/
    10–3
    ${N}/{ { {N_{\rm v}} } }({h_{\rm{V} } })$$\sigma (X)$
    0.751.003.5410.411.901.5900 0.152.202.455.009.340.2310
    0.750.603.478.0611.401.0100 0.151.602.312.698.540.3470
    0.750.303.447.2311.200.8060 0.151.002.211.728.070.5920
    0.252.002.595.499.610.3530 0.150.402.171.327.860.6920
    0.251.902.564.919.440.2110 02.502.264.409.000.0900
    0.251.802.544.429.290.0890 02.452.244.148.900.0470
    0.251.702.514.009.140.0220 02.402.233.908.830.0640
    0.251.602.493.639.030.1090 02.002.132.528.300.3950
    0.251.502.473.328.920.1870 01.502.041.607.830.6260
    0.251.302.432.818.720.3130 01.001.971.137.540.7470
    0.250.802.372.048.380.5080 –0.251.101.650.6026.860.8910
    –0.250.501.610.4576.700.9300
    下载: 导出CSV

    表 8  不同组合下等效虚拟点的均方偏差计算数据

    Table 8.  The mean square deviation calculation data of equivalent virtual point at different combination.

    h/cmw$\sigma (X)$w$\sigma (X)$w$\sigma (X)$w$\sigma (X)$w$\sigma (X)$
    0.800.100.200.300.400.50
    –0.400.902.4140.801.7830.702.8070.603.8320.504.86
    –0.600.902.1150.801.5120.702.5690.603.6270.504.69
    –0.800.901.9510.801.3620.702.4330.603.5100.504.59
    0.400.100.200.300.400.50
    –0.400.900.4660.800.2910.700.5290.600.7800.501.03
    –0.600.900.1770.800.1190.700.2860.600.5670.500.857
    –0.800.900.1850.800.2450.700.1750.600.4470.500.753
    00.100.200.300.400.50
    –0.400.900.1900.800.1600.700.1680.600.2350.500.327
    –0.600.900.4310.800.3460.700.2140.600.1230.500.165
    –0.800.900.6200.800.5120.700.3500.600.1970.500.112
    下载: 导出CSV
    h/cmw$\sigma (X)$w$\sigma (X)$w$\sigma (X)$w$\sigma (X)$
    0.800.600.700.800.90
    –0.400.405.880.306.910.207.930.108.96
    –0.600.405.750.306.810.207.870.108.92
    –0.800.405.670.306.750.207.830.108.90
    0.400.600.700.800.90
    –0.400.401.290.301.550.201.800.102.06
    –0.600.401.150.301.440.201.730.102.03
    –0.800.401.060.301.380.201.690.102.01
    00.600.700.800.90
    –0.400.400.4270.300.5320.200.6390.100.747
    –0.600.400.2870.300.4250.200.5670.100.711
    –0.800.400.2070.300.3610.200.5230.100.689
    下载: 导出CSV
  • [1]

    熊宗华, 亢武, 龚建, 胡广春, 向永春, 裴永全 2003 物理学报 52 1Google Scholar

    Xiong Z H, Kang W, Gong J, Hu G C, Xiang Y C, Pei Y Q 2003 Atca Phys. Sin. 52 1Google Scholar

    [2]

    Kováik A, Sy′kora I, Povinec P P 2013 J. Radioanal. Nucl. Chem. 298 665Google Scholar

    [3]

    Peyres V, García-Torao E 2007 Nucl. Instr. Meth. Phys. Res. A 580 296Google Scholar

    [4]

    田自宁, 欧阳晓平, 殷经鹏, 张洋, 杨文静 2013 原子能科学技术 47 1411Google Scholar

    Tian Z N, Ouyang X P, Yin J P, Zhang Y, Yang W J 2013 Atomic Energy Sci. Technol. 47 1411Google Scholar

    [5]

    Elanique A, Marzocchi O, Leone D, Hegenbart L, Breustedt B, Oufni L 2012 Appl. Radiat. Isot. 70 538Google Scholar

    [6]

    Budjá D, Heisel M, Maneschg W, Simgen H 2009 Appl. Radiat. Isot. 67 706Google Scholar

    [7]

    Gasparro J, Hult M, Johnston P N, Tagziria H 2008 Nucl. Instr. Meth. Phys. Res. A 594 196Google Scholar

    [8]

    Huya N Q, Binhb D Q, An V X 2007 Nucl. Instr. Meth. Phys. Res. A 573 384Google Scholar

    [9]

    Huy N Q 2010 Nucl. Instr. Meth. Phys. Res. A 621 390Google Scholar

    [10]

    Luís R, Bento J, Carvalhal G, Nogueira P, Silva L, Teles P, Vaz P 2010 Nucl. Instr. Meth. Phys. Res. A 623 1014Google Scholar

    [11]

    Mohammadi M A, Abdi M R, Kamali M, Mostajaboddavati M, Zare M R 2011 Appl. Radiat. Isot. 69 521Google Scholar

    [12]

    Presler O, German U, Pelled O, Alfassi Z B 2004 Appl. Radiat. Isot. 60 213Google Scholar

    [13]

    Mahling S, Orion I, Alfassi Z B 2006 Nucl. Instr. Meth. Phys. Res. A 557 544Google Scholar

    [14]

    熊文彬, 仇春华, 段天英, 刘浩杰, 潘君艳, 陈海涛, 刘进辉 2011 原子能科学技术 45 999

    Xiong W B, Qiu C H, Duan T Y, Liu H J, Pan J Y, Chen H T, Liu J H 2011 Atomic Energy Sci. Technol. 45 999

    [15]

    Noteal A 1971 Nucl. Instr. Meth. 91 513Google Scholar

    [16]

    田自宁, 欧阳晓平, 曾鸣, 成智威 2013 物理学报 62 162902Google Scholar

    Tian Z N, Ouyang X P, Zeng M, Cheng Z W 2013 Acta Phys. Sin. 62 162902Google Scholar

    [17]

    田自宁, 陈伟, 韩斌, 田言杰, 刘文彪, 冯天成, 欧阳晓平 2016 物理学报 65 062901Google Scholar

    Tian Z N, Chen W, Han B, Tian Y J, Liu W B, Feng T C, Ouyang X P 2016 Acta Phys. Sin. 65 062901Google Scholar

  • [1] 寻之朋, 郝大鹏. 含复杂近邻的二维正方格子键渗流的蒙特卡罗模拟. 物理学报, 2022, 71(6): 066401. doi: 10.7498/aps.71.20211757
    [2] 王丽敏, 段丙皇, 许献国, 李昊, 陈治军, 杨坤杰, 张硕. 基于蒙特卡罗模拟研究锆钛酸铅镧材料的中子辐照损伤. 物理学报, 2022, 71(7): 076101. doi: 10.7498/aps.71.20212041
    [3] 任杰, 阮锡超, 陈永浩, 蒋伟, 鲍杰, 栾广源, 张奇玮, 黄翰雄, 王朝辉, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 顾旻皓, 韩长材, 韩子杰, 贺国珠, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 易晗, 于莉, 余滔, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏. 中国散裂中子源反角白光中子源束内伽马射线研究. 物理学报, 2020, 69(17): 172901. doi: 10.7498/aps.69.20200718
    [4] 田自宁, 陈伟, 韩斌, 田言杰, 刘文彪, 冯天成, 欧阳晓平. 基于放射性气体源体积的虚拟源刻度技术. 物理学报, 2016, 65(6): 062901. doi: 10.7498/aps.65.062901
    [5] 陈媛, 王晓方, 邵光超. 电子束放射照相的特性与参数优化. 物理学报, 2015, 64(15): 154101. doi: 10.7498/aps.64.154101
    [6] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才. 强耦合腔量子电动力学中单原子转移的实验及模拟. 物理学报, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [7] 华钰超, 董源, 曹炳阳. 硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟. 物理学报, 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [8] 肖渊, 王晓方, 滕建, 陈晓虎, 陈媛, 洪伟. 激光加速电子束放射照相的模拟研究. 物理学报, 2012, 61(23): 234102. doi: 10.7498/aps.61.234102
    [9] 兰木, 向钢, 辜刚旭, 张析. 一种晶体表面水平纳米线生长机理的蒙特卡罗模拟研究. 物理学报, 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [10] 樊小辉, 赵兴宇, 王丽娜, 张丽丽, 周恒为, 张晋鲁, 黄以能. 分子串模型中空间弛豫模式的弛豫动力学的蒙特卡罗模拟. 物理学报, 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [11] 陈珊, 吴青云, 陈志高, 许桂贵, 黄志高. ZnO1-xCx稀磁半导体的磁特性的第一性原理和蒙特卡罗研究. 物理学报, 2009, 58(3): 2011-2017. doi: 10.7498/aps.58.2011
    [12] 熊开国, 封国林, 胡经国, 万仕全, 杨杰. 气候变化中高温破纪录事件的蒙特卡罗模拟研究. 物理学报, 2009, 58(4): 2843-2852. doi: 10.7498/aps.58.2843
    [13] 高飞, 山田亮子, 渡边光男, 刘华锋. 应用蒙特卡罗模拟进行正电子发射断层成像仪散射特性分析. 物理学报, 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
    [14] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用. 物理学报, 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [15] 雷晓蔚, 郑 波, 应和平. 二维自旋系统aging现象的数值模拟研究. 物理学报, 2007, 56(3): 1713-1718. doi: 10.7498/aps.56.1713
    [16] 和青芳, 徐 征, 刘德昂, 徐叙瑢. 蒙特卡罗方法模拟薄膜电致发光器件中碰撞离化的作用. 物理学报, 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [17] 王世奇, 连贵君, 熊光成. La0.7Ca0.3MnO3和CeO2混合块状样品电输运性质及使用分形迭代电阻网络模型的计算模拟. 物理学报, 2005, 54(8): 3815-3821. doi: 10.7498/aps.54.3815
    [18] 王志军, 董丽芳, 尚 勇. 电子助进化学气相沉积金刚石中发射光谱的蒙特卡罗模拟. 物理学报, 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [19] 王建华, 金传恩. 蒙特卡罗模拟在辉光放电鞘层离子输运研究中的应用. 物理学报, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
    [20] 郭宝增. 用全带Monte Carlo方法模拟纤锌矿相GaN和ZnO材料的电子输运特性. 物理学报, 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
计量
  • 文章访问数:  7661
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-16
  • 修回日期:  2019-09-19
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-05

/

返回文章
返回