搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于蒙特卡罗模拟研究锆钛酸铅镧材料的中子辐照损伤

王丽敏 段丙皇 许献国 李昊 陈治军 杨坤杰 张硕

引用本文:
Citation:

基于蒙特卡罗模拟研究锆钛酸铅镧材料的中子辐照损伤

王丽敏, 段丙皇, 许献国, 李昊, 陈治军, 杨坤杰, 张硕

Simulation of neutron irradiation damage in lead lanthanum zirconate titanate by Monte Carlo method

Wang Li-Min, Duan Bing-Huang, Xu Xian-Guo, Li Hao, Chen Zhi-Jun, Yang Kun-Jie, Zhang Shuo
PDF
HTML
导出引用
  • 锆钛酸铅镧(Pb0.94La0.06Zr0.96Ti0.04O3, PLZT)具有良好的介电和储能性质, 是高效、高能量密度电容元件和存储器件的基体材料. 为研究该材料的中子辐照损伤, 首先基于Geant4程序包模拟了能量为1—14 MeV中子辐照锆钛酸铅镧(PLZT)材料产生的反冲原子能谱, 然后根据产生的反冲原子种类和最大能量, 利用二元碰撞方法模拟了不同能量的离子在PLZT中产生的位移损伤(包括空位和间隙原子), 最后根据反冲原子能谱和对应能量离子在材料中产生的缺陷数目计算了不同能量的中子在PLZT材料中产生缺陷浓度以及分布. 结果发现, 对于1—14 MeV能区的快中子而言, 其在厚度为3 cm的PLZT材料中产生的缺陷数目近似与中子能量无关, 约为460 ± 120 空位/中子. 辐照损伤在3 cm厚度内随深度的增加而略有减小, 总体变化小于50%, 该减小主要是由于中子的反散射导致. 本工作为计算中子在材料中的位移损伤提供了一种方法, 同时模拟结果可为研究PLZT基电子器件的中子辐照效应提供指导.
    Lead lanthanum zirconate titanate (PLZT) has a broad application prospect for energy storage devices with high energy density, since it possesses excellent dielectric and energy storage properties. To investigate the irradiation damage to the PLZT induced by neutrons with different energy, the primary energetic recoil spectra of each kind of element are first extracted from the transportation simulations of neutrons with energy ranging from 1 to 14 MeV, respectively. Then, the displacement damages (including vacancies and interstitial atoms) induced by each type of recoil with different energy are simulated based on the binary collision approximation method. Finally the number of defects in PLZT produced by neutrons with an energy range from 1 to 14 MeV is calculated based on the recoil energy spectra and the defect number produced by the recoils. The results show that the number of defects produced in the PLZT material with a thickness of 3 cm is approximately independent of the neutron energy for the fast neutrons with energy in a range from 1 to 14 MeV, even though the primary recoil energy spectra from neutrons with different energy are completely different. The average number of defects produced in 3-cm-thick PLZT is about 460 ± 120 vacancies/neutrons. For neutrons with energy ranging from 1 to 14 MeV, the produced defect concentration in PLZT decreases slightly with the depth increasing within a thickness of 3 cm. The difference in defect concentration in this 3 cm is in a range of 50%. This decrease is caused mainly by the fact that some of neutrons are back-scattered during transport. The average defect concentration produced by neutron irradiation in the PLZT with a thickness of 3 cm is slightly(~20%) higher than that in the PLZT with a thickness of 1 mm. The reason for the higher defect concentration in a thicker (3 cm) PLZT can be attributed to the following facts: (i) the (n, 2n) reactions between neutron and material can make the number of neutrons increase during transport; (ii) the scattering can make the path of neutron longer; (iii) the inelastic scattering can lead to a smallnumber of moderated neutrons, which have a slightly larger interaction cross section with materials. This indicates the damage produced in thick PLZT is quite complicated and closely related to the process of neutron transport. This work presents a method of calculating the displacement damage of neutrons in materials, and the simulation results can provide guidance for studying the neutron irradiation effects of PLZT-based electronic devices.
      通信作者: 张硕, zhangshuo@lzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11875154, 12005200)和中央高校基本科研业务费专项资金(批准号: lzujbky-2019-13)资助的课题.
      Corresponding author: Zhang Shuo, zhangshuo@lzu.edu.cn
    • Funds: Project supported by the National NaturalScience Foundationof China (Grant Nos. 11875154, 12005200), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant No.lzujbky-2019-13).
    [1]

    谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜 2020 物理学报 69 192401Google Scholar

    Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 192401Google Scholar

    [2]

    Hazdra P, Záhlava V, Vobecký J 2014 Nucl. Instrum. Methods Phys. Res., Sect. B 327 124Google Scholar

    [3]

    Sharma R K, Hazdra P, Popelka S 2015 IEEE Trans. Nucl. Sci. 62 534Google Scholar

    [4]

    Rauls M B, Dong W, Huber J E, Lynch C S 2011 Acta Mater. 59 2713Google Scholar

    [5]

    Kumar A, Prasad V V B, Raju K C J, James A R 2016 J. Alloys Compd. 654 95Google Scholar

    [6]

    He H, Tan X 2007 J. Am. Ceram. Soc. 90 2090Google Scholar

    [7]

    Hao X, Zhai J, Kong L B, Xu Z 2014 Prog. Mater. Sci. 63 1Google Scholar

    [8]

    Haertling G H, Land C E 1971 J. Am. Ceram. Soc. 54 1

    [9]

    Sternberg A, Krumina A, Sprogis A, Rubulis A, Grinvalds G, Shebanov L, Weber H W, Klima H, Schwabl H, Dindun S, Ulmanis U 1992 Ferroelectrics 126 233Google Scholar

    [10]

    Bittner R, Humer K, Weber H W, Cakare L, Sternberg A, Lesnyh D. A, Kulikov D V, Trushin Y V 2002 Integr. Ferroelectr. 47 143Google Scholar

    [11]

    Kulikov D V, Trushin Y V, Kharlamov V S, Bittner R, Schmidt A A 2000 Proc. SPIE 4348 264

    [12]

    Sternberg A, Kundzins K, Zauls V, Aulika I, Akare L, Bittner R, Weber H, Humer K, Lesnyh D, Kulikov D 2004 J. Eur. Ceram. Soc. 24 1653Google Scholar

    [13]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R E, Suzudo T, Malerba L, Banhart F, Weber W J, Willaime F, Dudarev S L, Simeone D 2018 J. Nucl. Mater. 512 450Google Scholar

    [14]

    Nordlund K 2019 J. Nucl. Mater. 520 273Google Scholar

    [15]

    Robinson M T, Torrens I M 1974 Phys. Rev. B 9 5008Google Scholar

    [16]

    Zhang S, Nordlund K, Djurabekova F, Granberg F, Zhang Y, Wang T S 2017 Mater. Res. Lett. 5 433Google Scholar

    [17]

    Djurabekova F G, Pugacheva T S, Umarov F F, Yugay S V 2000 International Conference on Ion Implantation Technology Proceedings. Ion Implantation Technology-2000 (Cat. No. 00EX432), 17–22 Sept. 2000 228

    [18]

    Zhang S, Wang B W, Zhang L M, Liu N, Wang T S, Duan B H, Xu X G 2021 J. Phys. D:Appl. Phys. 54 245104Google Scholar

    [19]

    Zhang S, Nordlund K, Djurabekova F, Zhang Y, Velisa G, Wang T S 2016 Phys. Rev. E 94 043319Google Scholar

    [20]

    Zhang S, Pakarinen O H, Backholm M, Djurabekova F, Nordlund K, Keinonen J, Wang T S 2017 J. Phys.: Condens. Matter. 30 015403

    [21]

    Bukonte L, Djurabekova F, Samela J, Nordlund K, Norris S A, Aziz M J 2013 Nucl. Instrum. Methods Phys. Res., Sect. B 297 23Google Scholar

    [22]

    Klaver T P C, Zhang S, Nordlund K 2017 J. Nucl. Mater. 492 113Google Scholar

    [23]

    Agostinelli S, Allison J, Amako K, et al. 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 506 250Google Scholar

    [24]

    Allison J, Amako K, Apostolakis J, et al. 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 835 186Google Scholar

    [25]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [26]

    Nuclear Energy Agency http://www.oecd-nea.org/dbdata/jeff/jeff33/

    [27]

    Mendoza E, Cano-Ott D, Koi T, Guerrero C 2014 IEEE Trans. Nucl. Sci. 61 2357Google Scholar

    [28]

    J. F. Ziegler, J. P. Biersack, Littmark U 1985 The Stopping and Range of Ions in Matter (Pergamon, New York: Pergamon Press)

    [29]

    Ziegler J F http://www.srim.org/

    [30]

    Chadwick M B, Herman M, Obložinský P, et al. 2011 Nucl. Data Sheets 112 2887Google Scholar

  • 图 1  模拟中材料的中子辐照位置示意

    Fig. 1.  Schematic diagram of neutron irradiated region in the simulations.

    图 2  3 MeV(a)和10 MeV(b)中子辐照3 cm厚PLZT材料产生的初级反冲原子能谱

    Fig. 2.  Energy spectra of primary kinetic atoms produced by 3 MeV (a) and 10 MeV (b) neutron irradiation in PLZT with a thickness of 3 cm.

    图 3  弹性散射和非弹性散射过程引起的反冲原子数目

    Fig. 3.  Number of recoils caused by elastic scattering and inelastic scattering.

    图 4  1—14 MeV中子辐照3 cm厚PLZT材料产生的反冲原子数目(对应左侧Y轴的红色点线)和未与材料发生作用的中子数目(对应右侧Y轴的蓝色点线)

    Fig. 4.  Number of recoils (corresponding to the red dotted line and the left Y-axis) and the number of neutrons without interaction(corresponding to the blue dotted line and the right Y-axis) during irradiation of neutrons with energies from 1 to 14 MeVin PLZT with a thickness of 3 cm.

    图 5  不同能量、类型的离子在PLZT材料中产生的空位缺陷数目

    Fig. 5.  Number of vacancies produced by different types of ions in PLZT.

    图 6  1—14 MeV中子在3 cm厚PLZT材料中平均每个中子产生的空位缺陷数目

    Fig. 6.  The average number of vacancy defects inducedby irradiation of neutrons with energies range from1 to14 MeV in PLZT material with a thickness of 3 cm.

    图 7  平均每个1 MeV(a), 3 MeV(b), 10 MeV(c)和14 MeV(d)中子在PLZT材料中产生的空穴缺陷数目随深度的变化

    Fig. 7.  The depth distribution of vacancies produced by neutrons with energy of 1 MeV (a), 3 MeV (b), 10 MeV (c) and 14 MeV (d) in PLZT.

    图 8  1—14 MeV中子在1 mm PLZT材料和3 cm PLZT材料中每毫米内的空位缺陷数目

    Fig. 8.  Number of vacancies per millimeter produced by neutrons with energies from 1 to 14 MeV in PLZT materials with different thicknesses (1 mm and 3 cm).

  • [1]

    谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜 2020 物理学报 69 192401Google Scholar

    Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 192401Google Scholar

    [2]

    Hazdra P, Záhlava V, Vobecký J 2014 Nucl. Instrum. Methods Phys. Res., Sect. B 327 124Google Scholar

    [3]

    Sharma R K, Hazdra P, Popelka S 2015 IEEE Trans. Nucl. Sci. 62 534Google Scholar

    [4]

    Rauls M B, Dong W, Huber J E, Lynch C S 2011 Acta Mater. 59 2713Google Scholar

    [5]

    Kumar A, Prasad V V B, Raju K C J, James A R 2016 J. Alloys Compd. 654 95Google Scholar

    [6]

    He H, Tan X 2007 J. Am. Ceram. Soc. 90 2090Google Scholar

    [7]

    Hao X, Zhai J, Kong L B, Xu Z 2014 Prog. Mater. Sci. 63 1Google Scholar

    [8]

    Haertling G H, Land C E 1971 J. Am. Ceram. Soc. 54 1

    [9]

    Sternberg A, Krumina A, Sprogis A, Rubulis A, Grinvalds G, Shebanov L, Weber H W, Klima H, Schwabl H, Dindun S, Ulmanis U 1992 Ferroelectrics 126 233Google Scholar

    [10]

    Bittner R, Humer K, Weber H W, Cakare L, Sternberg A, Lesnyh D. A, Kulikov D V, Trushin Y V 2002 Integr. Ferroelectr. 47 143Google Scholar

    [11]

    Kulikov D V, Trushin Y V, Kharlamov V S, Bittner R, Schmidt A A 2000 Proc. SPIE 4348 264

    [12]

    Sternberg A, Kundzins K, Zauls V, Aulika I, Akare L, Bittner R, Weber H, Humer K, Lesnyh D, Kulikov D 2004 J. Eur. Ceram. Soc. 24 1653Google Scholar

    [13]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R E, Suzudo T, Malerba L, Banhart F, Weber W J, Willaime F, Dudarev S L, Simeone D 2018 J. Nucl. Mater. 512 450Google Scholar

    [14]

    Nordlund K 2019 J. Nucl. Mater. 520 273Google Scholar

    [15]

    Robinson M T, Torrens I M 1974 Phys. Rev. B 9 5008Google Scholar

    [16]

    Zhang S, Nordlund K, Djurabekova F, Granberg F, Zhang Y, Wang T S 2017 Mater. Res. Lett. 5 433Google Scholar

    [17]

    Djurabekova F G, Pugacheva T S, Umarov F F, Yugay S V 2000 International Conference on Ion Implantation Technology Proceedings. Ion Implantation Technology-2000 (Cat. No. 00EX432), 17–22 Sept. 2000 228

    [18]

    Zhang S, Wang B W, Zhang L M, Liu N, Wang T S, Duan B H, Xu X G 2021 J. Phys. D:Appl. Phys. 54 245104Google Scholar

    [19]

    Zhang S, Nordlund K, Djurabekova F, Zhang Y, Velisa G, Wang T S 2016 Phys. Rev. E 94 043319Google Scholar

    [20]

    Zhang S, Pakarinen O H, Backholm M, Djurabekova F, Nordlund K, Keinonen J, Wang T S 2017 J. Phys.: Condens. Matter. 30 015403

    [21]

    Bukonte L, Djurabekova F, Samela J, Nordlund K, Norris S A, Aziz M J 2013 Nucl. Instrum. Methods Phys. Res., Sect. B 297 23Google Scholar

    [22]

    Klaver T P C, Zhang S, Nordlund K 2017 J. Nucl. Mater. 492 113Google Scholar

    [23]

    Agostinelli S, Allison J, Amako K, et al. 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 506 250Google Scholar

    [24]

    Allison J, Amako K, Apostolakis J, et al. 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 835 186Google Scholar

    [25]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [26]

    Nuclear Energy Agency http://www.oecd-nea.org/dbdata/jeff/jeff33/

    [27]

    Mendoza E, Cano-Ott D, Koi T, Guerrero C 2014 IEEE Trans. Nucl. Sci. 61 2357Google Scholar

    [28]

    J. F. Ziegler, J. P. Biersack, Littmark U 1985 The Stopping and Range of Ions in Matter (Pergamon, New York: Pergamon Press)

    [29]

    Ziegler J F http://www.srim.org/

    [30]

    Chadwick M B, Herman M, Obložinský P, et al. 2011 Nucl. Data Sheets 112 2887Google Scholar

  • [1] 寻之朋, 郝大鹏. 含复杂近邻的二维正方格子键渗流的蒙特卡罗模拟. 物理学报, 2022, 71(6): 066401. doi: 10.7498/aps.71.20211757
    [2] 黄广伟, 吴坤, 陈晔, 李林祥, 张思远, 王尊刚, 朱红英, 周春芝, 张逸韵, 刘志强, 伊晓燕, 李晋闽. 单晶金刚石探测器对14 MeV单能中子的响应. 物理学报, 2021, 70(20): 202901. doi: 10.7498/aps.70.20210891
    [3] 程怡婷, AndreyS. Makarov, GennadiiV. Afonin, VitalyA. Khonik, 乔吉超. 基于剪切模量和热分析数据研究Zr50–xCu34Ag8Al8Pdx (x = 0, 2)非晶合金缺陷浓度演化. 物理学报, 2021, 70(14): 146401. doi: 10.7498/aps.70.20210256
    [4] 任杰, 阮锡超, 陈永浩, 蒋伟, 鲍杰, 栾广源, 张奇玮, 黄翰雄, 王朝辉, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 顾旻皓, 韩长材, 韩子杰, 贺国珠, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 易晗, 于莉, 余滔, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏. 中国散裂中子源反角白光中子源束内伽马射线研究. 物理学报, 2020, 69(17): 172901. doi: 10.7498/aps.69.20200718
    [5] 田自宁, 欧阳晓平, 陈伟, 王雪梅, 邓宁, 刘文彪, 田言杰. 基于虚拟源原理的源边界参数蒙特卡罗反演技术. 物理学报, 2019, 68(23): 232901. doi: 10.7498/aps.68.20191095
    [6] 田永顺, 胡志良, 童剑飞, 陈俊阳, 彭向阳, 梁天骄. 基于3.5 MeV射频四极质子加速器硼中子俘获治疗装置的束流整形体设计. 物理学报, 2018, 67(14): 142801. doi: 10.7498/aps.67.20180380
    [7] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [8] 章法强, 祁建敏, 张建华, 李林波, 陈定阳, 谢红卫, 杨建伦, 陈进川. 一种基于成像板的能量卡阈式快中子图像测量方法. 物理学报, 2014, 63(12): 128701. doi: 10.7498/aps.63.128701
    [9] 羊奕伟, 严小松, 刘荣, 鹿心鑫, 蒋励, 王玫, 林菊芳. 贫铀球壳中D-T中子诱发的铀反应率的测量与分析. 物理学报, 2013, 62(2): 022801. doi: 10.7498/aps.62.022801
    [10] 华钰超, 董源, 曹炳阳. 硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟. 物理学报, 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [11] 兰木, 向钢, 辜刚旭, 张析. 一种晶体表面水平纳米线生长机理的蒙特卡罗模拟研究. 物理学报, 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [12] 樊小辉, 赵兴宇, 王丽娜, 张丽丽, 周恒为, 张晋鲁, 黄以能. 分子串模型中空间弛豫模式的弛豫动力学的蒙特卡罗模拟. 物理学报, 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [13] 赵艳, 蒋毅坚. ZnO薄膜的激光辐照效应研究. 物理学报, 2010, 59(4): 2679-2684. doi: 10.7498/aps.59.2679
    [14] 陈珊, 吴青云, 陈志高, 许桂贵, 黄志高. ZnO1-xCx稀磁半导体的磁特性的第一性原理和蒙特卡罗研究. 物理学报, 2009, 58(3): 2011-2017. doi: 10.7498/aps.58.2011
    [15] 熊开国, 封国林, 胡经国, 万仕全, 杨杰. 气候变化中高温破纪录事件的蒙特卡罗模拟研究. 物理学报, 2009, 58(4): 2843-2852. doi: 10.7498/aps.58.2843
    [16] 高飞, 山田亮子, 渡边光男, 刘华锋. 应用蒙特卡罗模拟进行正电子发射断层成像仪散射特性分析. 物理学报, 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
    [17] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用. 物理学报, 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [18] 和青芳, 徐 征, 刘德昂, 徐叙瑢. 蒙特卡罗方法模拟薄膜电致发光器件中碰撞离化的作用. 物理学报, 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [19] 王志军, 董丽芳, 尚 勇. 电子助进化学气相沉积金刚石中发射光谱的蒙特卡罗模拟. 物理学报, 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [20] 王建华, 金传恩. 蒙特卡罗模拟在辉光放电鞘层离子输运研究中的应用. 物理学报, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
计量
  • 文章访问数:  4232
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-03
  • 修回日期:  2021-12-06
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-05

/

返回文章
返回