搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合填充下介质阻挡放电特性的PIC/MCC模拟

张璐璐 李天翔 庞学霞 葛禹琦 刘晓倩 冉俊霞 李庆 李雪辰

引用本文:
Citation:

混合填充下介质阻挡放电特性的PIC/MCC模拟

张璐璐, 李天翔, 庞学霞, 葛禹琦, 刘晓倩, 冉俊霞, 李庆, 李雪辰

Particle-in-cell/Monte Carlo collision simulations of dielectric barrier discharge packed with mixed dielectrics

ZHANG Lulu, LI Tianxiang, PANG Xuexia, GE Yuqi, LIU Xiaoqian, RAN Junxia, LI Qing, LI Xuechen
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 填充床介质阻挡放电通常采用某一种材料进行填充以实现等离子体催化反应, 而利用不同材料混合填充可以实现更复杂的化学反应. 为了深入理解混合填充放电的物理机制, 本文基于粒子云网格/蒙特卡罗碰撞(PIC/MCC)模型对其动力学行为进行研究. 结果表明, 流光最先在高介电常数(εr)的介质柱底部产生, 并沿着低εr介质柱缝隙向下传播. 当流光传播到下介质板后, 该放电转化为体放电. 随后, 在上介质板附近又产生一个新的流光, 并沿着高εr介质柱缝隙向下传播. 研究发现, 电子和正离子的数量随时间先增加, 在0.8 ns后电子数随时间减少, 但正离子数几乎保持不变. 在此过程中负离子数随时间单调增加. 此外, 介质柱缝隙中平均电子密度($ {\bar{n}}_{{\mathrm{e}}} $)和平均电子温度($ {\bar{T}}_{{\mathrm{e}}} $)随气压升高均减小. 它们随着电压幅值或介质柱半径的增大而增大. 随工作气体中氮气含量的增大, $ {\bar{n}}_{{\mathrm{e}}} $先减小后增大, 而$ {\bar{T}}_{{\mathrm{e}}} $单调增大. 这些研究结果对优化反应器设计, 进一步提升填充床介质阻挡放电的反应效率具有重要意义.
    Packed bed dielectric barrier discharge (PB-DBD) is extremely popular in plasma catalysis applications, which can significantly improve the selectivity and energy efficiency of the catalytic processes. In order to achieve some complex chemical reactions, it is necessary to mix different materials in practical applications. In this work, by using the two-dimensional particle-in-cell/Monte Carlo collision (PIC/MCC) method, the discharge evolution in PB-DBD packed with two mixed dielectrics is numerically simulated to reveal the discharge characteristics. Due to the polarization of dielectric columns, the enhancement of electric field induces streamers at the bottom of the dielectric columns with high electrical permittivity (εr). The streamers propagate downward in the voids between the dielectric columns with low εr, which finally converts into volume discharges. Then, a new streamer forms near the upper dielectric plate and propagates downward along the void of the dielectric columns with high εr. Moreover, electron density between the columns with high εr is lower than that between the dielectric columns with low εr. In addition, the numbers of e, $ {\text{N}}_{2}^{+} $, $ {\text{O}}_{2}^{+} $ and $ {\text{O}}_{2}^{-} $ present different profiles versus time. All of e, $ {\text{N}}_{2}^{+} $ and $ {\text{O}}_{2}^{+} $ increase in number before 0.8 ns. After 0.8 ns, the number of electrons decreases with time, while the numbers of $ {\text{N}}_{2}^{+} $ and $ {\text{O}}_{2}^{+} $ keep almost constant. In the whole process, the number of $ {\text{O}}_{2}^{-} $ keeps increasing with time increasing. The reason for the different temporal profiles can be analyzed as follows. The sum of electrons deposited on the dielectric and those lost in attachment reaction is greater than the number of electrons generated by ionization reaction, resulting in the declining trend of electrons. Comparatively, the deposition of $ {\text{N}}_{2}^{+} $ and $ {\text{O}}_{2}^{+} $ on the dielectric almost balances with their generation, leading to the constant numbers of $ {\text{N}}_{2}^{+} $ and $ {\text{O}}_{2}^{+} $. In addition, the variation of averaged electron density ($ {\bar{n}}_{{\mathrm{e}}} $) and averaged electron temperature ($ {\bar{T}}_{{\mathrm{e}}} $) in the voids between the dielectric columns are also analyzed under different experimental parameters. Simulation results indicate that both of them decrease with pressure increasing or voltage amplitude falling. Moreover, they increase with dielectric column radius enlarging. In addition, $ {\bar{n}}_{{\mathrm{e}}} $ increases and then decreases with the increase of N2 content in the working gas, while $ {\bar{T}}_{{\mathrm{e}}} $ monotonically increases. The variations of $ {\bar{n}}_{{\mathrm{e}}} $ and $ {\bar{T}}_{{\mathrm{e}}} $ in the voids can be explained as follows. With the increase of pressure, the increase of collision frequency and the decrease of average free path lead to less energy obtained per unit time by electrons from the electric field, resulting in the decreasing of $ {\bar{T}}_{{\mathrm{e}}} $. Moreover, the first Townsend ionization coefficient decreases with the reduction in $ {\bar{T}}_{{\mathrm{e}}} $, resulting in less electrons produced per unit time. Hence, both $ {\bar{n}}_{{\mathrm{e}}} $ and $ {\bar{T}}_{{\mathrm{e}}} $ decrease with pressure increasing. Additionally, $ {\bar{T}}_{{\mathrm{e}}} $is mainly determined by electric field strength. Therefore, the rising voltage amplitude results in the increase of and $ {\bar{T}}_{{\mathrm{e}}} $. Based on the same reason for pressure, $ {\bar{n}}_{{\mathrm{e}}} $ also increases with the augment of voltage amplitude. Consequently, both $ {\bar{n}}_{{\mathrm{e}}} $ and $ {\bar{T}}_{{\mathrm{e}}} $ increase with voltage amplitude increasing. In addition, the surface area of dielectric columns increases with dielectric column radius enlarging. Therefore, more polarized charges are induced on the inner surface of the dielectric column, inducing a stronger electric field outside. Accordingly, the enlarging of dielectric column radius leads $ {\bar{n}}_{{\mathrm{e}}} $ and $ {\bar{T}}_{{\mathrm{e}}} $ to increase. Moreover, the variation of $ {\bar{n}}_{{\mathrm{e}}} $ with N2 content is analyzed from the ionization rate, and that of $ {\bar{T}}_{{\mathrm{e}}} $ is obtained by analyzing the ionization thresholds of N2 and O2.
  • 图 1  二维PB-DBD反应器示意图.

    Fig. 1.  Schematic diagram of the two-dimensional PB-DBD reactor.

    图 2  混合填充 ($ {\varepsilon }_{{\mathrm{r}}} $= 2.5和25.0) PB-DBD中ne (m–3) (a)和E (V/m) (b)的时空演化图, (a), (b)中的数值分别对应最大的lg (ne) 和E (×107)

    Fig. 2.  Spatial-temporal evolution of ne (m–3) (a) and E (V/m) (b) in PB-DBD packed by mixed dielectric columns with $ {\varepsilon }_{{\mathrm{r}}} $= 2.5 and 25.0. The maximal (×107 V/m) values correspond to maximal lg (ne) and E (×107), respectively.

    图 3  不同时刻的电子能量分布函数.

    Fig. 3.  The electron energy distribution function at different discharge moments.

    图 4  混合填充 ($ {\varepsilon }_{{\mathrm{r}}} $= 2.5和25.0) PB-DBD中e, $ {\text{N}}_{2}^{+} $, $ {\text{O}}_{2}^{+} $和$ {\text{O}}_{2}^{-} $数量随时间的变化

    Fig. 4.  Numbers of e, $ {\text{N}}_{2}^{+} $, $ {\text{O}}_{2}^{+} $ and $ {\text{O}}_{2}^{-} $ versus time in PB-DBD packed by mixed dielectric columns with $ {\varepsilon }_{{\mathrm{r}}} $= 2.5 and 25.0.

    图 5  介质柱缝隙中平均电子密度($ {\bar{n}}_{{\mathrm{e}}} $)和平均电子温度($ {\bar{T}}_{{\mathrm{e}}} $)随气压的变化. 其中取平均的空间对应图1中红色虚线框内介质柱缝隙(白色区域)

    Fig. 5.  Averaged electron density ($ {\bar{n}}_{{\mathrm{e}}} $) and averaged electron temperature ($ {\bar{T}}_{{\mathrm{e}}} $) as functions of pressure, the average is made in the voids between the dielectric columns surrounded by the red dashed lines (the white regions) in Fig. 1.

    图 6  介质柱缝隙中$ {\bar{n}}_{{\mathrm{e}}} $和$ {\bar{T}}_{{\mathrm{e}}} $随电压幅值Va的变化, 其中取平均的空间与图5相同

    Fig. 6.  The $ {\bar{n}}_{{\mathrm{e}}} $ and $ {\bar{T}}_{{\mathrm{e}}} $ in the voids between the dielectric columns as functions of Va, the voids are the same with those in Fig. 5.

    图 7  介质柱缝隙中$ {\bar{n}}_{{\mathrm{e}}} $和$ {\bar{T}}_{{\mathrm{e}}} $随介质柱半径 (R) 的变化关系. 其中取平均的空间与图5相同. 对于不同R, Va也成比例变化以保持外加电场不变

    Fig. 7.  The $ {\bar{n}}_{{\mathrm{e}}} $ and $ {\bar{T}}_{{\mathrm{e}}} $ in the voids between the dielectric columns as functions of dielectric column radius (R), the voids are the same with those in Fig. 5. Va is varied for different R to keep applied E constant.

    图 8  介质柱缝隙中$ {\bar{n}}_{{\mathrm{e}}} $和$ {\bar{T}}_{{\mathrm{e}}} $随混合气体中N2含量的变化关系, 其中取平均的空间与图5相同

    Fig. 8.  The $ {\bar{n}}_{{\mathrm{e}}} $ and $ {\bar{T}}_{{\mathrm{e}}} $ in the voids between the dielectric columns as functions of N2 content in the mixture, the voids are the same with those in Fig. 5.

    表 1  模型中所考虑的电子与N2和O2的碰撞.

    Table 1.  Collisions of electrons with neutral N2 and O2 considered in the model.

    Reaction Threshold/eV Reference
    Electron-impact ionization [41,4345]
    $ {\mathrm{e}}+{{\mathrm{O}}}_{2} $→$ 2 e+{{\mathrm{O}}}_{2}^{+} $ 12.06
    $ {\mathrm{e}}+{{\mathrm{N}}}_{2} $→$ 2 e+{{\mathrm{N}}}_{2}^{+} $ 15.58
    Attachment [41,4345]
    $ {\mathrm{e}}+{{\mathrm{O}}}_{2}+{{\mathrm{O}}}_{2} $→$ {{\mathrm{O}}}_{2}^{-}+{{\mathrm{O}}}_{2} $
    Elastic collision [4345]
    $ {\mathrm{e}}+{{\mathrm{O}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{O}}}_{2} $
    $ {\mathrm{e}}+{{\mathrm{N}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{N}}}_{2} $
    Electron-impact excitation [4345]
    $ {\mathrm{e}}+{{\mathrm{O}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{O}}}_{2}^{{\mathrm{*}}} $ 0.98
    $ {\mathrm{e}}+{{\mathrm{O}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{O}}}_{2}^{{\mathrm{*}}} $ 1.63
    $ {\mathrm{e}}+{{\mathrm{O}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{O}}}_{2}^{{\mathrm{*}}} $ 6.0
    $ {\mathrm{e}}+{{\mathrm{O}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{O}}}_{2}^{{\mathrm{*}}} $ 8.4
    $ {\mathrm{e}}+{{\mathrm{O}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{O}}}_{2}^{{\mathrm{*}}} $ 10.0
    $ {\mathrm{e}}+{{\mathrm{N}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{N}}}_{2}^{{\mathrm{*}}} $ 6.169
    $ {\mathrm{e}}+{{\mathrm{N}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{N}}}_{2}^{{\mathrm{*}}} $ 7.353
    $ {\mathrm{e}}+{{\mathrm{N}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{N}}}_{2}^{{\mathrm{*}}} $ 7.362
    $ {\mathrm{e}}+{{\mathrm{N}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{N}}}_{2}^{{\mathrm{*}}} $ 8.165
    $ {\mathrm{e}}+{{\mathrm{N}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{N}}}_{2}^{{\mathrm{*}}} $ 8.399
    $ {\mathrm{e}}+{{\mathrm{N}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{N}}}_{2}^{{\mathrm{*}}} $ 8.549
    $ {\mathrm{e}}+{{\mathrm{N}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{N}}}_{2}^{{\mathrm{*}}} $ 8.89
    $ {\mathrm{e}}+{{\mathrm{N}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{N}}}_{2}^{{\mathrm{*}}} $ 9.7537
    $ {\mathrm{e}}+{{\mathrm{N}}}_{2} $→$ {\mathrm{e}}+{{\mathrm{N}}}_{2}^{{\mathrm{*}}} $ 11.032
    下载: 导出CSV

    表 2  电离速率与附着速率随混合气体中N2含量(10%, 40%, 60%, 90%)的变化

    Table 2.  Change of ionization rate and attachment rate with N2 content (10%, 40%, 60%, 90%) in mixed gas.

    $ {C}_{{{\mathrm{N}}}_{2}} $/%kion/(m3·s–1)katt/(m3·s–1)
    105.0×10–149.0×10–17
    402.7×10–141.5×10–16
    601.3×10–143.1×10–16
    907.2×10–148.0×10–16
    下载: 导出CSV
  • [1]

    Bogaerts A, Kozák T, Van Laer K, Snoeckx R 2015 Faraday Discuss. 183 271

    [2]

    陈少伟, 陈奕, 牛江奇, 刘天奇, 黄建国, 陈焕浩, 范晓雷 2024 化工进展 44

    Chen S W, Chen Y, Niu J Q, Liu T Q, Huang J G, Chen H H, Fan X L 2024 Chem. Ind. Eng. Pro. 44

    [3]

    程 鹤, 雷孝廷, 张文超, 卢新培 2024 高电压技术 50 5206

    Cheng H, Lei X T, Zhang W C, Lu X P 2024 High Volt. Eng. 50 5206

    [4]

    张海宝, 陈强 2021 物理学报 70 095203Google Scholar

    Zhang H B, Chen Q 2021 Acta Phys. Sin. 70 095203Google Scholar

    [5]

    Lee S, Ha J, Li O L 2024 Nanomaterials 14 1313Google Scholar

    [6]

    Li J, Guo Q, Zhao X, Hu Y K, Zhang S Z, Zhao Y, Li S Z 2023 Mol. Catal. 549 113494Google Scholar

    [7]

    Zhang S, Gao Y, Sun H, Fan Z, Shao T 2022 High Volt. 7 e12201

    [8]

    Hu G T, Ma Y C, Hao Q L, Liu D L, Dou B J, Bin F 2024 New J. Chem. 48 2624Google Scholar

    [9]

    Xu W C, Buelens L C, Galvita V V, Bogaerts A, Meynen V 2024 J. CO2 Util. 83 102820Google Scholar

    [10]

    Lv X, Zhang H P, Zhang H, Shao Y Y, Zhu J S 2024 Prog. Coat. 192 108499Google Scholar

    [11]

    Xu S S, Chansai S, Shao Y, Xu S J, Wang Y C, Haigh S, Mu Y B, Jiao Y L, Stere C E, Chen H H, Fan X L, Hardacre C 2020 Appl. Catal. B: Environ. 268 118752Google Scholar

    [12]

    Zhang S, Gao Y, Sun H, Fan Z, Shao T 2021 Plasma Sci. Technol. 23 064007Google Scholar

    [13]

    Michielsen I, Uytdenhouwen Y, Pype J, Michielsen B, Mertens J, Reniers F, Meynen V, Bogaerts A 2017 Chem. Eng. J. 326 477Google Scholar

    [14]

    Van Laer K, Bogaerts A 2017 Plasma Processes Polym. 14 1600129Google Scholar

    [15]

    Lu X P, Fang Z, Dai D, Shao T, Liu F, Zhang C, Liu D W, Nie L L, Jiang C Q 2023 High Volt. 8 1132Google Scholar

    [16]

    Ren C H, Huang B D, Luo Y, Zhang C, Shao T 2023 Plasma Chem. Plasma Process. 43 1613Google Scholar

    [17]

    Li S Q, Liu Y H, Yuan H, Liang J P, Zhang M, Li Y, Yang D Z 2022 Appl. Sci. 12 8895Google Scholar

    [18]

    Gómez-Ramírez A, Montoro-Damas A M, Cotrino J, Lambert R M, González-Elipe A R 2017 Plasma Processes Polym. 14 e1600081Google Scholar

    [19]

    Jiang N, Lu N, Shang K F, Li J, Wu Y 2013 J. Hazardous Mater. 262 387Google Scholar

    [20]

    Engeling K W, Kruszelnicki J, Kushner M J, Foster J E 2018 Plasma Sources Sci. Technol. 27 085002Google Scholar

    [21]

    Wang W Z, Butterworth T, Bogaerts A 2021 J. Phys. D: Appl. Phys. 54 214004Google Scholar

    [22]

    Li Y, Yang D Z, Qiao J J, Zhang L, Wang W Z, Zhao Z L, Zhou X F, Yuan H, Wang W C 2020 Plasma Sources Sci. Technol. 29 055004Google Scholar

    [23]

    Li X C, Zhang L L, Chen K, Ran J X, Pang X X, Jia P Y 2024 IEEE Trans. Plasma Sci. 52 1619Google Scholar

    [24]

    Van Laer K, Bogaerts A 2017 Plasma Sources Sci. Technol. 26 085007Google Scholar

    [25]

    Zhao P, Gu J G, Wang H Y, Zhang Y, Xu X Y, Jiang W 2020 Plasma Sci. Technol. 22 034013Google Scholar

    [26]

    Zhu M, Hu S Y, Wu F F, Ma H, Xie S Y, Zhang C H 2022 J. Phys. D: Appl. Phys. 55 225207Google Scholar

    [27]

    Zhu X B, Hu X L, Wu X Q, Cai Y X, Zhang H B, Tu X 2020 J. Phys. D: Appl. Phys. 53 164002Google Scholar

    [28]

    Jo S, Lee D H, Kang W S, Song Y H 2014 Phys. Plasmas 20 123507

    [29]

    Li J, Zhu S J, Lu K, Ma C H, Yang D Z, Yu F 2021 J. Environ. Chem. Eng. 9 104654Google Scholar

    [30]

    Xiong R X, Zhao P, Wang H Y, Zhang Y, Jiang W 2020 J. Phys. D: Appl. Phys. 53 185202Google Scholar

    [31]

    Gadkari S, Gu S 2018 Phys. Plasmas 25 063513Google Scholar

    [32]

    Mujahid Z, Korolov I, Liu Y, Mussenbrock T, Schulze J 2022 J. Phys. D: Appl. Phys. 55 495201Google Scholar

    [33]

    彭毅, 汪纯婧, 李晶, 高凯悦, 徐汉城, 陈传杰, 钱沐杨, 董冰岩, 王德真 2025 物理学报 74 025202Google Scholar

    Peng Y, Wang C J, Li J, Gao K Y, Xu H C, Chen C J, Qian M Y, Dong B Y, Wang D Z 2025 Acta Phys. Sin. 74 025202Google Scholar

    [34]

    Kourtzanidis, K 2023 Plasma Sources Sci. Technol. 32 105016Google Scholar

    [35]

    Liu J, Zhu X B, Hu X L, Tu X 2022 Plasma Sci. Technol. 24 025503Google Scholar

    [36]

    Kang W S, Kim H H, Teramoto Y, Ogata A, Lee J Y, Kim D W, Hur M, Song Y H 2018 Plasma Sources Sci. Technol. 27 015018Google Scholar

    [37]

    Van Laer K, Bogaerts A 2016 Plasma Sources Sci. Technol. 25 015002Google Scholar

    [38]

    Li S J, Yu X, Dang X Q, Wang P Y, Meng X K, Wang Q, Hou H 2022 J. Clean. Prod. 340 130774Google Scholar

    [39]

    Li S J, Yu X, Dang X Q, Wang P Y, Meng X K, Zheng H C 2022 Plasma Sci. Technol. 24 015504Google Scholar

    [40]

    Gao M X, Zhang Y, Wang H Y, Guo B, Zhang Q Z, Bogaerts A 2018 Catal. 8 248

    [41]

    Zhang Y, Wang H Y, Zhang Y R, Bogaerts A 2017 Plasma Sources Sci. Technol. 26 054002Google Scholar

    [42]

    Zhang Q Z, Zhang L, Yang D Z, Schulze J, Wang Y N, Bogaerts A 2020 Plasma Processes Polym. 18 e2000234

    [43]

    Zuo X, Zhou Y Y, Zhang Q Z, Wang H Y, Li Z H, Zhu J Z, Jiang X W, Zhang Y 2022 Plasma Processes Polym. 19 e2200025Google Scholar

    [44]

    Biagi V8.9 Database. [Online]. 2015 Available: https://www.lxcat.net

    [45]

    Gu J G, Zhang Y, Gao M X, Wang H Y, Zhang Q Z, Yi L, Jiang W 2019 J. Appl. Phys. 125 153303Google Scholar

    [46]

    Zhang Y, Wang H Y, Jiang W, Bogaerts A 2015 New J. Phys. 17 083056Google Scholar

    [47]

    Kuhfeld J, Lepikhin N D, Luggenholscher D, Gzarnetzki U, Donko Z 2023 Plasma Sources Sci. Technol. 32 084001Google Scholar

    [48]

    石峰, 王昊, 朱红伟 2018 真空与低温 24 188Google Scholar

    Shi F, Wang H, Zhu H W 2018 Vacuum Cryogenics 24 188Google Scholar

    [49]

    Zhang L Y, Zhang Q Z, Mujahid Z U, Neuroth C, Berger B, Schulze J 2024 Plasma Sources Sci. Technol. 33 105016Google Scholar

    [50]

    Meierbachtol C S, Greenwood A D, Verboncoeur J P, Shanker B 2015 IEEE Trans. Plasma Sci. 43 3778Google Scholar

    [51]

    Raizer Y P, Kisin V I, Allen J E 1991 Gas Discharge Physics (Heidelberg: Springer

    [52]

    Naidis G V 2011 Appl. Sci. 38 141501

    [53]

    Rad R H, Brüser V, Schiorlin M, Schäfer J, Brandenburg R 2023 Chem. Eng. J. 456 141072Google Scholar

    [54]

    Mei D H, Zhu X B, He Y L, Yan J D, Tu X 2015 Plasma Sources Sci. Technol. 24 015011

    [55]

    Wang X B, Zhu C Y, Wang L, Liu J Q, Jin A 2022 Radiat. Eff. Defect. S. 177 1117

    [56]

    张雪雪, 贾鹏英, 冉俊霞, 李金懋, 孙焕霞, 李雪辰 2024 物理学报 73 085201Google Scholar

    Zhang X X, Jia P Y, Ran J X, Li J M, Sun H X, Li X C 2024 Acta Phys. Sin. 73 085201Google Scholar

    [57]

    Cui Z L, Zhou C, Jafarzadeh A, Meng S Y, Yi Y H, Wang Y F, Zhang X X, Hao Y P, Li L C, Bogaerts A 2022 High Volt. 7 1048Google Scholar

    [58]

    Kumar P, Saha S K, Sharma A 2023 Chem. Eng. S. 282 119372Google Scholar

    [59]

    Chachereau A, Pancheshnyi S 2014 IEEE Trans. Plasma Sci. 42 3328Google Scholar

  • [1] 舒盼盼, 赵朋程. 高功率微波介质窗气体侧击穿特性的粒子-蒙特卡罗碰撞模拟. 物理学报, doi: 10.7498/aps.73.20241177
    [2] 杨双越, 温小琼, 杨元天, 李霄. 水下多针电极微秒脉冲流光放电特性. 物理学报, doi: 10.7498/aps.73.20231881
    [3] 王雪, 温小琼, 王丽茹, 杨元天, 薛晓东. 水中流光放电流光丝的再发光和暂停行为. 物理学报, doi: 10.7498/aps.71.20211162
    [4] 林毅, 刘文波, 沈骞. 五阶压控忆阻蔡氏混沌电路的双稳定性. 物理学报, doi: 10.7498/aps.67.20181283
    [5] 许雅明, 王丽丹, 段书凯. 磁控二氧化钛忆阻混沌系统及现场可编程逻辑门阵列硬件实现. 物理学报, doi: 10.7498/aps.65.120503
    [6] 李佳佳, 吴莹, 独盟盟, 刘伟明. 电磁辐射诱发神经元放电节律转迁的动力学行为研究. 物理学报, doi: 10.7498/aps.64.030503
    [7] 邵书义, 闵富红, 吴薛红, 张新国. 基于现场可编程逻辑门阵列的新型混沌系统实现. 物理学报, doi: 10.7498/aps.63.060501
    [8] 许碧荣. 一种最简的并行忆阻器混沌系统. 物理学报, doi: 10.7498/aps.62.190506
    [9] 寻之朋, 唐刚, 夏辉, 郝大鹏. 1+1 维抛射沉积模型内部结构动力学行为的数值研究. 物理学报, doi: 10.7498/aps.62.010503
    [10] 钱郁. 时空调制对可激发介质螺旋波波头动力学行为影响及控制研究. 物理学报, doi: 10.7498/aps.61.158202
    [11] 郭福明, 宋阳, 陈基根, 曾思良, 杨玉军. 含时量子蒙特卡罗方法研究两电子原子在强激光作用下电子的动力学行为. 物理学报, doi: 10.7498/aps.61.163203
    [12] 胡耀垓, 赵正予, 张援农. 电离层钡云释放早期动力学行为的数值模拟. 物理学报, doi: 10.7498/aps.61.089401
    [13] 董丽芳, 白占国, 贺亚峰. 非均匀可激发介质中的稀密螺旋波. 物理学报, doi: 10.7498/aps.61.120509
    [14] 包伯成, 刘中, 许建平. 忆阻混沌振荡器的动力学分析. 物理学报, doi: 10.7498/aps.59.3785
    [15] 施华萍, 柯见洪, 孙策, 林振权. 中国人口分布规律及演化机理研究. 物理学报, doi: 10.7498/aps.58.1.1
    [16] 王宝燕, 徐伟, 邢真慈. 外界电场激励下的耦合FitzHugh-Nagumo神经元系统的放电节律研究. 物理学报, doi: 10.7498/aps.58.6590
    [17] 刘 凌, 苏燕辰, 刘崇新. 新三维混沌系统及其电路仿真实验. 物理学报, doi: 10.7498/aps.56.1966
    [18] 刘崇新. 一个超混沌系统及其分数阶电路仿真实验. 物理学报, doi: 10.7498/aps.56.6865
    [19] 刘 凌, 苏燕辰, 刘崇新. 一个新混沌系统及其电路仿真实验. 物理学报, doi: 10.7498/aps.55.3933
    [20] 冯培成, 唐翌. 扭结孤子牛顿动力学行为的奇异摄动理论. 物理学报, doi: 10.7498/aps.50.1213
计量
  • 文章访问数:  268
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-20
  • 修回日期:  2025-04-17
  • 上网日期:  2025-05-06

/

返回文章
返回