搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1+1 维抛射沉积模型内部结构动力学行为的数值研究

寻之朋 唐刚 夏辉 郝大鹏

引用本文:
Citation:

1+1 维抛射沉积模型内部结构动力学行为的数值研究

寻之朋, 唐刚, 夏辉, 郝大鹏

Numerical study on the dynamic behavior of internal structure of 1+1-dimensional ballistic deposition model

Xun Zhi-Peng, Tang Gang, Xia Hui, Hao Da-Peng
PDF
导出引用
  • 采用Kinetic Monte Carlo方法对1+1维抛射沉积(BD) 模型内部结构的动力学行为进行了大量的数值模拟研究. 分别分析了空洞密度和内部界面的动力学行为. 研究表明, 空洞密度呈高斯型分布, 其平均值首先随生长时间快速增长, 然后达到一个与基底尺寸无关的饱和值.除表面宽度, 还引入了新的极值统计方法来分析该模型内部界面的动力学行为, 分析结果显示, 1+1维BD模型内部界面的演化满足标准的Family-Vicsek标度规律, 并且属Kardar-Parisi-Zhang方程所描述的普适类. 最后对表面宽度和极值统计两种理论方法的有限尺寸效应进行了比较.
    In this paper, the dynamic behavior of internal structure of 1+1-dimensional ballistic deposition model is simulated by means of Kinetic Monte Carlo. The dynamic behaviors of the porosity and internal interface are investigated. It is found that the porosity, with the standard Gaussian distribution, increases very fast at the initial times and reaches a saturation valve, which is independent of the linear substrates. In addition to the surface width, the new method of extreme statistics is also employed to analyze the dynamic behavior of internal interface. The results show that the evolution of the internal interface of 1+1-dimensional ballistic deposition model satisfies the standard Family-Vicsek scaling, and belongs to the universality class described by the Kardar-Parisi-Zhang equation. Finally, the finite-size effects obtained by the two theoretical methods, i.e., surface width and extreme statistics are compared.
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: 2012QNA42)资助的课题.
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2012QNA42).
    [1]

    Barabási A L, Stanley H E 1995 Fractal Concepts in Surface Growth (Cambridge: Cambridge University Press)

    [2]

    Family F, Vicsek T 1991 Dynamics of Fractal Surfaces (Singapore: World Scientific Press)

    [3]

    Tang G, Ma B K 2002 Acta Phys. Sin. 51 994 (in Chinese) [唐刚, 马本堃 2002 物理学报 51 994]

    [4]

    Xun Z P, Tang G, Han K, Hao D P, Xia H, Zhou W, Yang X Q, Wen R J, Chen Y L 2010 Chin. Phys. B 19 070516

    [5]

    Tang G, Hao D P, Xia H, Han K, Xun Z P 2010 Chin. Phys. B 19 100508

    [6]

    Zhang Y W, Tang G, Han K, Xun Z P, Xie Y Y, Li Y 2012 Acta Phys. Sin. 61 020511 (in Chinese) [张永伟, 唐刚, 韩奎, 寻之朋, 谢裕颖, 李炎 2012 物理学报 61 020511]

    [7]

    Family F, Vicsek T 1985 J. Phys. A 18 L75

    [8]

    Raychaudhuri S, Cranston M, Przybyla C, Shapir Y 2001 Phys. Rev. Lett. 87 136101

    [9]

    Majumdar S N, Comtet A 2004 Phys. Rev. Lett. 92 225501

    [10]

    Schehr G, Majumdar S N 2006 Phys. Rev. E 73 056103

    [11]

    Oliveira T J, Aarao Reis F D A 2008 Phys. Rev. E 77 041605

    [12]

    Sutherland D N 1966 J. Colloid. Interface Sci. 22 300

    [13]

    Vold M J 1959 J. Colloid Sci. 14 168

    [14]

    Vold M J 1959 J. Phys. Chem. 63 1608

    [15]

    Meakin P, Jullien R 1987 SPIE 821 45

    [16]

    Baiod R, Kessler D, Ramanlal P, Sander L, Savit R 1988 Phys. Rev. A 38 3672

    [17]

    Meakin P, Ramanlal P, Sander L M, Ball R C 1986 Phys. Rev. A 34 5091

    [18]

    Meakin P 1993 Phys. Rep. 235 189

    [19]

    Katzav E, Schwartz M 2004 Phys. Rev. E 70 061608

    [20]

    Nagatani T 1998 Phys. Rev. E 58 700

    [21]

    Aarao Reis F D A 2001 Phys. Rev. E 63 056116

    [22]

    Farnudi B, Vvedensky D D 2011 Phys. Rev. E (R) 83 020103

    [23]

    Hao D P, Tang G, Xia H, Han K, Xun Z P 2011 Acta Phys. Sin. 60 038102 (in Chinese) [郝大鹏, 唐刚, 夏辉, 韩奎, 寻之朋 2011 物理学报 60 038102]

    [24]

    Kardar M, Parisi G, Zhang Y C 1986 Phys. Rev. Lett. 56 889

    [25]

    Yu J G, Amar J G 2002 Phys. Rev. E(R) 65 060601

    [26]

    Katzav E, Edwards S F, Schwartz M 2006 Europhys. Lett. 75 29

  • [1]

    Barabási A L, Stanley H E 1995 Fractal Concepts in Surface Growth (Cambridge: Cambridge University Press)

    [2]

    Family F, Vicsek T 1991 Dynamics of Fractal Surfaces (Singapore: World Scientific Press)

    [3]

    Tang G, Ma B K 2002 Acta Phys. Sin. 51 994 (in Chinese) [唐刚, 马本堃 2002 物理学报 51 994]

    [4]

    Xun Z P, Tang G, Han K, Hao D P, Xia H, Zhou W, Yang X Q, Wen R J, Chen Y L 2010 Chin. Phys. B 19 070516

    [5]

    Tang G, Hao D P, Xia H, Han K, Xun Z P 2010 Chin. Phys. B 19 100508

    [6]

    Zhang Y W, Tang G, Han K, Xun Z P, Xie Y Y, Li Y 2012 Acta Phys. Sin. 61 020511 (in Chinese) [张永伟, 唐刚, 韩奎, 寻之朋, 谢裕颖, 李炎 2012 物理学报 61 020511]

    [7]

    Family F, Vicsek T 1985 J. Phys. A 18 L75

    [8]

    Raychaudhuri S, Cranston M, Przybyla C, Shapir Y 2001 Phys. Rev. Lett. 87 136101

    [9]

    Majumdar S N, Comtet A 2004 Phys. Rev. Lett. 92 225501

    [10]

    Schehr G, Majumdar S N 2006 Phys. Rev. E 73 056103

    [11]

    Oliveira T J, Aarao Reis F D A 2008 Phys. Rev. E 77 041605

    [12]

    Sutherland D N 1966 J. Colloid. Interface Sci. 22 300

    [13]

    Vold M J 1959 J. Colloid Sci. 14 168

    [14]

    Vold M J 1959 J. Phys. Chem. 63 1608

    [15]

    Meakin P, Jullien R 1987 SPIE 821 45

    [16]

    Baiod R, Kessler D, Ramanlal P, Sander L, Savit R 1988 Phys. Rev. A 38 3672

    [17]

    Meakin P, Ramanlal P, Sander L M, Ball R C 1986 Phys. Rev. A 34 5091

    [18]

    Meakin P 1993 Phys. Rep. 235 189

    [19]

    Katzav E, Schwartz M 2004 Phys. Rev. E 70 061608

    [20]

    Nagatani T 1998 Phys. Rev. E 58 700

    [21]

    Aarao Reis F D A 2001 Phys. Rev. E 63 056116

    [22]

    Farnudi B, Vvedensky D D 2011 Phys. Rev. E (R) 83 020103

    [23]

    Hao D P, Tang G, Xia H, Han K, Xun Z P 2011 Acta Phys. Sin. 60 038102 (in Chinese) [郝大鹏, 唐刚, 夏辉, 韩奎, 寻之朋 2011 物理学报 60 038102]

    [24]

    Kardar M, Parisi G, Zhang Y C 1986 Phys. Rev. Lett. 56 889

    [25]

    Yu J G, Amar J G 2002 Phys. Rev. E(R) 65 060601

    [26]

    Katzav E, Edwards S F, Schwartz M 2006 Europhys. Lett. 75 29

  • [1] 林毅, 刘文波, 沈骞. 五阶压控忆阻蔡氏混沌电路的双稳定性. 物理学报, 2018, 67(23): 230502. doi: 10.7498/aps.67.20181283
    [2] 许雅明, 王丽丹, 段书凯. 磁控二氧化钛忆阻混沌系统及现场可编程逻辑门阵列硬件实现. 物理学报, 2016, 65(12): 120503. doi: 10.7498/aps.65.120503
    [3] 杨毅, 唐刚, 张哲, 寻之朋, 宋丽建, 韩奎. 科赫分形基底上受限固-固模型动力学标度行为的数值研究. 物理学报, 2015, 64(13): 130501. doi: 10.7498/aps.64.130501
    [4] 邵书义, 闵富红, 吴薛红, 张新国. 基于现场可编程逻辑门阵列的新型混沌系统实现. 物理学报, 2014, 63(6): 060501. doi: 10.7498/aps.63.060501
    [5] 许碧荣. 一种最简的并行忆阻器混沌系统. 物理学报, 2013, 62(19): 190506. doi: 10.7498/aps.62.190506
    [6] 谢裕颖, 唐刚, 寻之朋, 韩奎, 夏辉, 郝大鹏, 张永伟, 李炎. 随机稀释基底上刻蚀模型动力学标度行为的数值模拟研究. 物理学报, 2012, 61(7): 070506. doi: 10.7498/aps.61.070506
    [7] 张永伟, 唐刚, 韩奎, 寻之朋, 谢裕颖, 李炎. 分形基底上刻蚀模型动力学标度行为的数值模拟研究. 物理学报, 2012, 61(2): 020511. doi: 10.7498/aps.61.020511
    [8] 董丽芳, 白占国, 贺亚峰. 非均匀可激发介质中的稀密螺旋波. 物理学报, 2012, 61(12): 120509. doi: 10.7498/aps.61.120509
    [9] 郝大鹏, 唐刚, 夏辉, 韩奎, 寻之朋. 遮蔽效应对抛射沉积模型标度性质的影响. 物理学报, 2012, 61(2): 028102. doi: 10.7498/aps.61.028102
    [10] 郝大鹏, 唐刚, 夏辉, 韩奎, 寻之朋. 含遮蔽抛射沉积模型的有限尺寸效应. 物理学报, 2011, 60(3): 038102. doi: 10.7498/aps.60.038102
    [11] 包伯成, 刘中, 许建平. 忆阻混沌振荡器的动力学分析. 物理学报, 2010, 59(6): 3785-3793. doi: 10.7498/aps.59.3785
    [12] 王宝燕, 徐伟, 邢真慈. 外界电场激励下的耦合FitzHugh-Nagumo神经元系统的放电节律研究. 物理学报, 2009, 58(9): 6590-6595. doi: 10.7498/aps.58.6590
    [13] 施华萍, 柯见洪, 孙策, 林振权. 中国人口分布规律及演化机理研究. 物理学报, 2009, 58(1): 1-8. doi: 10.7498/aps.58.1.1
    [14] 刘崇新. 一个超混沌系统及其分数阶电路仿真实验. 物理学报, 2007, 56(12): 6865-6873. doi: 10.7498/aps.56.6865
    [15] 刘 凌, 苏燕辰, 刘崇新. 新三维混沌系统及其电路仿真实验. 物理学报, 2007, 56(4): 1966-1970. doi: 10.7498/aps.56.1966
    [16] 刘 凌, 苏燕辰, 刘崇新. 一个新混沌系统及其电路仿真实验. 物理学报, 2006, 55(8): 3933-3937. doi: 10.7498/aps.55.3933
    [17] 唐 军, 杨先清, 仇 康. 反应限制聚集模型的动力学行为的研究. 物理学报, 2005, 54(7): 3307-3311. doi: 10.7498/aps.54.3307
    [18] 冯培成, 唐翌. 扭结孤子牛顿动力学行为的奇异摄动理论. 物理学报, 2001, 50(7): 1213-1216. doi: 10.7498/aps.50.1213
    [19] 杨援, 戴建华, 张洪钧. 光学双稳态离散模型的动力学行为. 物理学报, 1994, 43(5): 699-706. doi: 10.7498/aps.43.699
    [20] 汪子丹, 姚希贤. Josephson结的动力学行为(Ⅰ). 物理学报, 1985, 34(9): 1140-1148. doi: 10.7498/aps.34.1140
计量
  • 文章访问数:  5808
  • PDF下载量:  407
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-11
  • 修回日期:  2012-07-19
  • 刊出日期:  2013-01-05

/

返回文章
返回