搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相对论扭曲波方法研究电子与原子碰撞激发过程

李文博 李兵兵 陈浩 颉录有 武中文 丁晓彬 张登红 蒋军 董晨钟

引用本文:
Citation:

相对论扭曲波方法研究电子与原子碰撞激发过程

李文博, 李兵兵, 陈浩, 颉录有, 武中文, 丁晓彬, 张登红, 蒋军, 董晨钟

Fully relativistic distorted-wave method of studying electron-atom collision excitation process

LI Wenbo, LI Bingbing, CHEN Hao, XIE Luyou, WU Zhongwen, DING Xiaobin, ZHANG Denghong, JIANG Jun, DONG Chenzhong
PDF
HTML
导出引用
  • 相对论扭曲波方法是研究微观粒子碰撞动力学过程的常用理论方法. 本文基于多组态Dirac-Hartree-Fock (MCDHF)方法以及相应的程序包GRASP 92/2K/2018和RATIP, 发展了一套电子与原子碰撞激发过程的全相对论扭曲波方法和程序. 计算了极化电子与原子碰撞激发过程的总截面、微分截面、态多极以及碰撞激发后辐射光子的积分和微分Stokes参数等. 讨论了电子关联效应、Breit相互作用和等离子体屏蔽效应对碰撞激发截面的影响. 该方法和程序的发展为详细研究复杂靶离子的碰撞激发过程和讨论电子关联效应以及Breit相互作用对碰撞激发过程的影响提供了条件.
    The electron-atom (ion) collision excitation process is one of the most common inelastic scattering processes. It is of great significance in the fields of astrophysics and laboratory plasma. The relativistic distorted-wave method is a widely used theoretical tool for studying electron-atom (ion) collisions, with the aim of obtaining scattering parameters, such as impact cross sections and rate coefficients.In recent years, we have developed a set of fully relativistic distorted-wave methods and programs of studying the electron-atom collision excitation processes. This method is based on the multi-configuration Dirac-Hartree-Fock (MCDHF) method, together with the corresponding packages GRASP 92/2K/2018 and RATIP. In the present work, continuum state wave functions, total and differential cross sections, state multipoles, integral and differential Stokes parameters of the radiation photon after the impact excitation processes of polarized electrons and atoms are calculated. The influences of electron correlation effects, Breit interaction, and plasma screening effects on the excitation cross sections are discussed. The present methods and programs possess several advantages below.1) In the calculations of the continuum electron wave functions, the direct interaction and exchange interaction between the bound electron and the continuum electron are both included. Then, the anti-symmetrized coupling wave function, which is composed of the continuum electron wave function and the continuum ion wave function, is utilized as the wave function of the system. This method is employed to study the low-energy electron scattering process and medium energy electron scattering process.2) In this method, the target state wave function is obtained form the MCDHF theory and the corresponding GRASP packages. The MCDHF method has the advantage of being able to consider the electron correlation effects, including valence-valence, core-valence, and core-core correlations, as well as the influence of Breit interaction and quantum electrodynamics (QED) effect on the target state wave function. Furthermore, the calculation of the collision excitation matrix elements also includes the contribution of the Breit interaction. Consequently, the present method integrates the advantages of both the MCDHF method and distorted-wave method, thus is made suitable for studying the scattering processes of highly charged ions. In addition, it facilitates the study of the influence of higher-order effects on the collision dynamics, thereby obtaining high-precision theoretical data.3) The current method and program can also be utilized to study the scattering cross section of electron-atom collision excitation processes, as well as the influence of plasma screening effects on collision excitation. Furthermore, the state multipoles, differential Stokes parameters, integral Stokes parameters, and orientation parameters of electron-complex atom collision excitation can be studied in detail by using the present method and program.
  • 图 1  极化电子与光子Stokes参数测量示意图

    Fig. 1.  Schematic diagram of polarized electron and photon Stokes parameter measurement.

    图 2  Xe原子的激发截面随入射电子能量的变化, 方形为模型A的结果, 三角形为模型B的结果, 带误差条的圆形为Jung 等[115]的实验(数据图片来自于文献[116])

    Fig. 2.  Excitation cross section of Xe atom varies with the energy of incident electron. The square is the result of model A, the triangle is the result of model B, and the circle with error bars is the experiment of Jung et al[115]. From Ref. [116].

    图 3  入射电子能量为8 eV时, 不同计算模型下Hg原子1S0 - 3P1电子碰撞激发微分截面, 其中SC为模型I单组态近似的计算结果, 6l为模型II的计算结果, 7l为模型III的计算结果, Experiment为Goeke等[117]的实验结果

    Fig. 3.  Differential cross sections of electron collision excitation of Hg atom 1 S0-3P1 under different calculation models, when the incident electron energy is 8 eV. The SC is the calculation result of single configuration approximation of model I, 6l is the calculation result of model II, 7l is the calculation result of model III, Experiment is the result of Goeke et al[117].

    图 4  从基态2p6 J = 0到2p53s J = 2的磁能级之间的激发截面(数据图片来自于文献[108])

    Fig. 4.  Excitation cross sections from ground state 2p6 J = 0 to 2p53s J= 2 magnetic energy levels. From Ref. [108].

    图 5  入射电子能量为45 eV时, 电子与Ca原子从基态到1P1的碰撞激发微分Stokes参数P1, P2和-P3, 其中$ \kappa $为最大分波量子数, Experiment为Dyl等[120]的实验结果

    Fig. 5.  Collision excitation differential Stokes parameters P1, P2 and -P3 of electron and Ca atom from ground state to 1 P1, when the incident electron energy is 45 eV. $ \kappa $ is the maximum partial wave quantum number, and Experiment is the result of Dyl et al[120].

    图 6  入射电子能量为8 eV时, 不同关联模型下计算的Hg原子1S0-3P1归一化的态多极, 其中SC为利用单组态计算的结果, MC 6l为考虑了6l关联轨道的计算结果, MC 7l为考虑了7l关联轨道的计算结果, Experiment为Sohn等[122]的实验结果

    Fig. 6.  Normalized state multipoles of Hg atom 1S0-3P1 calculated under different correlation models, when the incident electron energy is 8 eV. The SC is the calculation result using a single configuration, MC 6l is the calculation result considering the 6l correlation orbit, MC 7l is the calculation result considering the 7l correlation orbit, and Experiment refers to the results of Sohn et al[122]

    图 7  入射电子能量为15 eV时, 不同关联模型下计算的Hg原子1S0-3P1归一化的态多极, 其中SC为利用单组态计算的结果, MC 6l为考虑了6l关联轨道的计算结果, MC 7l为考虑了7l关联轨道的计算结果, RDW R 为Srivastava等[121]的理论结果, Experiment为Sohn等[122]的实验结果

    Fig. 7.  Normalized state multipoles of Hg atom 1S0-3P1 calculated under different correlation models, when the incident electron energy is 15 eV. The SC is the calculation result using a single configuration, MC 6l is the calculation result considering the 6l correlation orbit, MC 7l is the calculation result considering the 7l correlation orbit, RDW R is the theoretical result of Srivastava et al[121], and Experiment refers to the results of Sohn et al[122].

    图 8  从基态1s2 1S0 到 1s2p 1P13P1的激发截面随屏蔽长度的变化(数据图片来自于文献[128])

    Fig. 8.  Excitation cross sections from ground state 1s2 1S0 to 1s2p 1P1 and 3P1 vary with shielding length. From Ref. [128].

  • [1]

    Fontes C J, Sampson D H, Zhang H L 1993 Phys. Rev. A 47 1009Google Scholar

    [2]

    Fontes C J, Zhang H L, Sampson D H 1999 Phys. Rev. A 59 295Google Scholar

    [3]

    Ren C, Wu Z W, Jiang J, Xie L Y, Zhang D H, Dong C Z 2018 Phys. Rev. A 98 012711Google Scholar

    [4]

    Jakubowicz H, Moores D L 1981 J. Phys. B: Atom. Mol. Phys. 14 3733Google Scholar

    [5]

    Bartschat K, Burke P G 1987 J. Phys. B: Atom. Mol. Phys. 20 3191Google Scholar

    [6]

    Teng H G 2000 J. Phys. B: Atom. Mol. Phys. 33 L553Google Scholar

    [7]

    Wu D, Loch S D, Pindzola M S, Balance C P 2012 Phys. Rev. A 85 012711Google Scholar

    [8]

    Liu P F, Liu Y P, Zeng J L, Yuan J M 2014 Phys. Rev. A 89 042704Google Scholar

    [9]

    蒋军2007 硕士学位论文(兰州: 西北师范大学)

    Jiang J 2007 M. S. Thesis (Lanzhou: Northwest Normal University

    [10]

    Suckewer S, Hinnov E 1978 Phys. Rev. Lett. 41 756Google Scholar

    [11]

    Eichler J 1990 Phys. Rep. 193 165Google Scholar

    [12]

    Vane C R, Datz S, Dittner P F, Giese J, Jones N L, Krause H F, Rosseel T M, Peterson R S 1994 Phys. Rev. A 49 1847Google Scholar

    [13]

    Wan J J, Dong C Z, Ding X B, Ma X W, Rzadkiewicz J, Stöhlker T, Fritzsche S 2009 Phys. Rev. A 79 022707Google Scholar

    [14]

    Eichler J, Stöhlker T 2007 Phys. Rep. 439 1Google Scholar

    [15]

    Biswas S, Monti J M, Tachino C A, Rivarola R D, Tribedi L C 2015 J. Phys. B: At. Mol. Opt. Phys. 48 115206Google Scholar

    [16]

    Abdurakhmanov I B, Kadyrov A S, Avazbaev S K, Bray I 2016 J. Phys. B: At. Mol. Opt. Phys. 49 115203Google Scholar

    [17]

    Zhang S B, Wang J G, Janev R K 2010 Phys. Rev. Lett. 104 023203Google Scholar

    [18]

    Fang X, Liu X W 2013 Mon. Not. R. Astron. Soc. 429 2791Google Scholar

    [19]

    Menchero L F, Zatsarinny O, Bartschat K 2017 J. Phys. B: At. Mol. Opt. Phys. 50 065203Google Scholar

    [20]

    Cheung C, Safronova M, Porsev S 2021 Symmetry 13 621Google Scholar

    [21]

    Wu Z W, He Z M, Tian Z Q, Dong C Z, Fritzsche S 2022 Phys. Rev. A 105 062813Google Scholar

    [22]

    Li F H, Li J T, Zheng Y, Guo L X, Liu W, Liu Z Y 2023 IEEE T. Plasma Sci. 51 3579Google Scholar

    [23]

    Yan J, Liu Y P, Hou Y, Gao C, Wu J H, Zeng J L, Yuan J M 2023 Chin. Phys. B 32 063101Google Scholar

    [24]

    Zeng J L, Jiang X B, Gao C, Wu J H, Yuan J M 2024 Results Phys. 58 107522Google Scholar

    [25]

    刘丽娟2012 硕士学位论文(兰州: 西北师范大学)

    Liu L J 2012 M. S. Thesis (Lanzhou: Northwest Normal University

    [26]

    Silver J D, Varney A J, Margolis H S, Baird P E G, Grant I P, Groves P D, Hallett W A, Handford A T, Hirst P J, Holmes A R, Howie D J H, Hunt R A, Nobbs K A, Roberts M, Studholme W, Wark J S, Williams M T, Levine M A, Dietrich D D, Graham W G, Williams I D, O’Neil R, Rose S J 1994 Rev. Sci. Instrum. 65 1072Google Scholar

    [27]

    Biedermann C, Förster A, Fußmann G, Radtke R 1997 Phys. Scr. T73 360Google Scholar

    [28]

    Crespo J R, Dorn A, Moshammer R, Ullrich J 1999 Phys. Scr. T80B 502

    [29]

    Beiersdorfer P, Brown G V 2015 Phys. Rev. A 91 032514Google Scholar

    [30]

    Hu Z M, Han X Y, Li Y M, Kato D, Tong X M, Nakamura N 2012 Phys. Rev. Lett. 108 073002Google Scholar

    [31]

    Yan C L, Lu Q, Xie Y M, Li B L, Fu N, Zou Y, Chen C, Xiao J 2022 Phys. Rev. A 105 032820Google Scholar

    [32]

    Dunn G H, Djurić N, Chung Y S, Bannister M, Smith A C H 1995 Nucl. Instr. Meth. Phys. Res. B 98 107Google Scholar

    [33]

    Taylor P O, Dunn G H 1973 Phys. Rev. A 8 2304Google Scholar

    [34]

    Rogers W T, Olsen J Q, Dunn G H 1978 Phys. Rev. A 18 1353Google Scholar

    [35]

    Huber B A, Ristori C, Hervieux P A, Maurel M, Guet C, Andrä H J 1991 Phys. Rev. Lett. 67 1407Google Scholar

    [36]

    Huber B A, Ristori C, Guet C, Küchler D, Johnson W R 1994 Phys. Rev. Lett. 73 2301Google Scholar

    [37]

    Srigengan B, Williams I D, Newell W R 1996 J. Phys. B: At. Mol. Opt. Phys. 29 L605Google Scholar

    [38]

    Bannister M E, Djurić N, Woitke O, Dunn G H, Chung Y S, Smith A C H, Wallbank B, Berrington K A 1999 Int. J. Mass Spectrom. 192 39Google Scholar

    [39]

    Phaneuf R A, Havener C C, Dunn G H, Müller A 1999 Rep. Prog. Phys. 62 1143Google Scholar

    [40]

    Wallbank B, Bannister M E, Krause H F, Chung Y S, Smith A C H, Djurić N, Dunn G H 2007 Phys. Rev. A 75 052703Google Scholar

    [41]

    Smirnov Yu M 2015 J. Phys. B: At. Mol. Opt. Phys. 48 165204Google Scholar

    [42]

    Smirnov Yu M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 175204Google Scholar

    [43]

    Smirnov Yu M 2017 Russ. J. Phys. Chem. B 11 873Google Scholar

    [44]

    Huang Z K, Wen W Q, Wang S X, Khan N, Wang H B, Chen C Y, Zhang C Y, Preval S P, Badnell N R, Ma W L, Liu X, Chen D Y, Zhu X L, Zhao D M, Mao L J, Ma X M, Li J, Tang M T, Mao R S, Yin D Y, Yang W Q, Yang J C, Yuan Y J, Zhu L F, Ma X 2020 Phys. Rev. A 102 062823Google Scholar

    [45]

    Wang S X, Huang Z K, Wen W Q, Ma W L, Wang H B, Schippers S, Wu Z W, Kozhedub Y S, Kaygorodov M Y, Volotka A V, Wang K, Zhang C Y, Chen C Y, Liu C, Huang H K, Shao L, Mao L J, Ma X M, Li J, Tang M T, Yan K M, Zhou Y B, Yuan Y J, Yang J C, Zhang S F, Ma X, Zhu L F 2022 Phys. Rev. A 106 042808Google Scholar

    [46]

    邵林, 黄忠魁, 汶伟强, 汪书兴, 黄厚科, 马万路, 刘畅, 汪寒冰, 陈冬阳, 刘鑫, 周晓鹏, 赵冬梅, 张少锋, 朱林繁, 马新文 2024 物理学报 73 123402Google Scholar

    Shao L, Huang Z K, Wen W Q, Wang S X, Huang H K, Ma W L, Liu C, Wang H B, Chen D Y, Liu X, Zhou X P, Zhao D M, Zhang S F, Zhu L F, Ma X W 2024 Acta Phys. Sin. 73 123402Google Scholar

    [47]

    Liu X J, Zhu L F, Yuan Z S, Li W B, Cheng H D, Huang Y P, Zhong Z P, Xu K Z, Li J M 2003 Phys. Rev. Lett. 91 193203Google Scholar

    [48]

    Du X J, Xu Y C, Wang L H, Li T J, Ma Z R, Wang S X, Zhu L F 2022 Phys. Rev. A 105 012812Google Scholar

    [49]

    Wang D H, Wang S X, Nie Z W, Wang L H, Xu Y C, Du X J, Zhu L F 2022 Plasma Sources Sci. Technol. 31 045012Google Scholar

    [50]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar

    [51]

    Xia Z H, Ren B, Zhang R T, Wei L, Han J, Meng T, Wang J, Ma P, Zhang Y, Tu B, Xiao J, Yao K, Zou Y, Zhu X L, Guo D L, Ma X, Wei B 2022 Astrophysical J. 933 207Google Scholar

    [52]

    Ren B, Ma P, Zhang Y, Wei L, Han J, Xia Z, Wang J, Meng T, Yu W, Zou Y, Yang C L, Wei B 2022 Phys. Rev. A 106 012805Google Scholar

    [53]

    Uhlmann L J, Dall R G, Truscott A G, Hoogerland M D, Baldwin K G H, Buckman S J 2005 Phys. Rev. Lett. 94 173201Google Scholar

    [54]

    Łukomski M, MacAskill J A, Seccombe D P, McGrath C, Sutton S, Teeuwen J, Kedzierski W, Reddish T J, McConkey J W, Wijngaarden W A van 2005 J. Phys. B: At. Mol. Opt. Phys. 38 3535Google Scholar

    [55]

    Byron L J, Dall R G, Truscott A G 2010 Phys. Rev. A 81 013405Google Scholar

    [56]

    Daw A, Gardner L D, Janzen P H, Kohl J L 2006 Phys. Rev. A 73 032709Google Scholar

    [57]

    Knehr E, Kuzmin A, Doerner S, Wuensch S, Ilin K, Schmidt H, Siegel M 2020 Appl. Phys. Lett. 117 132602Google Scholar

    [58]

    Heddle D W O, Samuel M J 1970 J. Phys. B: Atom. Mol. Phys. 3 1593Google Scholar

    [59]

    Stewart M D, Jr, Chilton J E, Boffard J B, Lin C C 2002 Phys. Rev. A 65 032704Google Scholar

    [60]

    McCarthy I E, Weigold E 1988 Rep. Prog. Phys. 51 299Google Scholar

    [61]

    McCarthy I E, Weigold E 1991 Rep. Prog. Phys. 54 789Google Scholar

    [62]

    Fursa D V, Bray I 1995 Phys. Rev. A 52 1279Google Scholar

    [63]

    Bray I, Fursa D V 1996 Phys. Rev. Lett. 76 2674Google Scholar

    [64]

    Bartschat K, Zatsarinny O 2015 Phys. Scr. 90 054006Google Scholar

    [65]

    Zhao G P, Liu L, Chang Z, Wang J G, Janev R K 2018 J. Phys. B: At. Mol. Opt. Phys. 51 085201Google Scholar

    [66]

    Liu Y D, Jia C C, Ma M X, Gao X, Liu L, Wu Y, Chen X J, Wang J G 2024 Chin. Phys. B 33 083401Google Scholar

    [67]

    杨威, 蔡晓红, 于得洋 2005 物理学报 54 2128Google Scholar

    Yang W, Cai X H, Yu D Y 2005 Acta Phys. Sin. 54 2128Google Scholar

    [68]

    Whiteford A D, Badnell N R, Ballance C P, O’Mullane M G, Summers H P, Thomas A L 2001 J. Phys. B: At. Mol. Opt. Phys. 34 3179Google Scholar

    [69]

    Fan Q P, Wang W H, Hu F, Cao L F, Zhang Q Q, Liu Y W, Jiang G 2014 Chin. Phys. B 23 113401Google Scholar

    [70]

    Chen Y Q, Jiang X W, Yao L F, Jiang W, Liu H N, Zhang Y 2023 Plasma Sources Sci. Technol. 32 045017Google Scholar

    [71]

    Bar-Shalom A, Klapisch M, Oreg J 1988 Phys. Rev. A 38 1773Google Scholar

    [72]

    Meng F C, Chen C Y, Wang Y S, Zou Y M 2007 Chinese Phys. Lett. 24 3404Google Scholar

    [73]

    Gu M F 2008 Can. J. Phys. 86 675

    [74]

    Podpaly Y, Clementson J, Beiersdorfer P, Williamson J, Brown G V, Gu M F 2009 Phys. Rev. A 80 052504Google Scholar

    [75]

    Ma Y L, Liu L, Xie L Y, Wu Y, Zhang D H, Dong C Z, Qu Y Z, Wang J G Chin. Phys. B 31 043401

    [76]

    Zhang C Y, Wu S J, Wang K, Si R, Yao K, Huang Z K, Wen W Q, Ma X W, Chen C Y, Badnell N R 2023 Phys. Rev. A 108 022801Google Scholar

    [77]

    杜贵锋2011 硕士学位论文(兰州: 西北师范大学)

    Du G F 2011 M. S. Thesis (Lanzhou: Northwest Normal University

    [78]

    杨宁选2009 硕士学位论文(兰州: 西北师范大学)

    Yang N X 2009 M. S. Thesis (Lanzhou: Northwest Normal University

    [79]

    Macek J, Jaecks D H 1971 Phys. Rev. A 4 2288Google Scholar

    [80]

    Bartschat K, Blum K, Hanne G F, Kessler J 1981 J. Phys. B: Atom. Mol. Phys. 14 3761Google Scholar

    [81]

    Bartschat K, Scott N S, Blum K, Burke P G 1984 J. Phys. B: Atom. Mol. Phys. 17 269Google Scholar

    [82]

    Khalid S M, Kleinpoppen H 1984 J. Phys. B: Atom. Mol. Phys. 17 243Google Scholar

    [83]

    Raeker A, Blum K, Bartschat K 1993 J. Phys. B: Atom. Mol. Phys. 26 1491Google Scholar

    [84]

    Kłosowski Ł, Piwiski M, Dziczek D, Wiśniewska K, Chwirot S 2007 Meas. Sci. Technol. 18 3801Google Scholar

    [85]

    Kłosowski Ł, Piwiski M, Dziczek D, Pleskacz K, Chwirot S 2009 Phys. Rev. A 80 062709Google Scholar

    [86]

    Hussey M, Murray A, MacGillivray W, King G C 2007 Phys. Rev. Lett. 99 133202Google Scholar

    [87]

    Percival A K, Jhumka S, Hussey M, Murray A J 2011 J. Phys. B: At. Mol. Opt. Phys. 44 105203Google Scholar

    [88]

    Polasik M 1989 Phys. Rev. A 39 616Google Scholar

    [89]

    Wu Z W, Tian Z Q, Dong C Z, Surzhykov A, Fritzsche S 2023 New J. Phys. 25 093039Google Scholar

    [90]

    Ding X B, Koike F, Murakami I, Kato D, Sakaue H A, Dong C Z, Nakamura N 2012 J. Phys. B: At. Mol. Opt. Phys. 45 035003Google Scholar

    [91]

    Wang K, Li S, Jönsson P, Fu N, Dang W, Guo X L, Chen C Y, Yan J, Chen Z B, Si R 2017 J. Quant. Spectrosc. Radiat. Transf. 187 375Google Scholar

    [92]

    颉录有2008 博士学位论文(兰州: 西北师范大学)

    Xie L Y 2008 Ph. D. Dissertation (Lanzhou: Northwest Normal University

    [93]

    武中文2012 硕士学位论文(兰州: 西北师范大学)

    Wu Z W 2012 M. S. Thesis 2012 (Lanzhou: Northwest Normal University

    [94]

    Parpia F A, Fischer C F, Grant I P 1996 Compt. Phys. Commun. 94 249Google Scholar

    [95]

    Jönsson P, Gaigalas G, Bieroń J, Fischer C F, Grant I P 2013 Compt. Phys. Commun. 184 2197Google Scholar

    [96]

    Fischer C F, Gaigalas G, Jönsson P, Bieroń J 2019 Compt. Phys. Commun. 237 184Google Scholar

    [97]

    Fritzsche S, Fischer C F, Dong C Z 2000 Compt. Phys. Commun. 124 340Google Scholar

    [98]

    Fritzsche S 2012 Compt. Phys. Commun. 183 1525Google Scholar

    [99]

    Carse G D, Walker D W 1973 J. Phys. B: Atom. Mol. Phys. 6 2529Google Scholar

    [100]

    Walker D W 1974 J. Phys. B: Atom. Mol. Phys. 7 97Google Scholar

    [101]

    Dong C Z, Xie L Y, Zhou X X, Ma X W, Fritzsche S 2003 Hyperfine Interact. 146 161

    [102]

    Li J G, Dong C Z, Yu Y J, Ding X B, Fritzsche S, Fricke B 2007 Sci. China Phys. Mech. 50 707Google Scholar

    [103]

    Xie L Y, Wang J G, Janev R K, Qu Y Z, Dong C Z 2012 Eur. Phys. J. D 66 125Google Scholar

    [104]

    Grant I P, McKenzie B J, Norrington P H, Mayers D F, Pyper N C 1980 Compt. Phys. Commun. 21 207Google Scholar

    [105]

    Dyall K G, Grant I P, Johnson C T, Parpia F A, Plummer E P 1989 Compt. Phys. Commun. 55 425Google Scholar

    [106]

    Jiang J, Dong C Z, Xie L Y, Wang J G, Yan J, Fritzsche S 2007 Chin. Phys. Lett. 24 691Google Scholar

    [107]

    Li B W, Dong C Z, Jiang J, Wang J G 2010 Eur. Phys. J. D 59 201Google Scholar

    [108]

    Jiang J, Dong C Z, Xie L Y, Wang J G 2008 Phys. Rev. A 78 022709Google Scholar

    [109]

    马小云2013 硕士学位论文(兰州: 西北师范大学)

    Ma X Y 2013 M. S. Thesis (Lanzhou: Northwest Normal University

    [110]

    Grant I P 1970 Adv. Phys. 1 747

    [111]

    Rodrigues G C, Ourdane M A, Bieroń J, Indelicato P, Lindroth E. 2000 Phys. Rev. A 63 012510Google Scholar

    [112]

    Dong C Z, Fritzsche S 2005 Phys. Rev. A 72 012507Google Scholar

    [113]

    Fischer C F, Godefroid M, Brage T, Jönsson P, Gaigalas G 2016 J. Phys. B: At. Mol. Opt. Phys. 49 182004Google Scholar

    [114]

    Andersen N, Broad J T, Campbell E E B, Gallagher J W, Hertel I V 1997 Phys. Rep. 278 107Google Scholar

    [115]

    Jung R O, Boffard J B, Anderson L W, Lin C C 2005 Phys. Rev. A 72 022723Google Scholar

    [116]

    Jiang J, Dong C Z, Xie L Y, Zhou X X, Wang J G 2008 J. Phys. B: At. Mol. Opt. Phys. 41 245204Google Scholar

    [117]

    Goeke J, Hanne G F, Kessler J 1989 J. Phys. B: Atom. Mol. Phys. 22 1075Google Scholar

    [118]

    Beiersdorfer P, Osterheld A L, Chen M H, Henderson J R, Knapp D A, Levine M A, Marrs R E, Reed K J, Schneider M B, Vogel D A 1990 Phys. Rev. Lett. 65 1995Google Scholar

    [119]

    Takács E, Meyer E S, Gillaspy J D, Roberts J R, Chantler C T, Hudson L T, Deslattes R D, Brown C M, Laming J M, Dubau J, Inal M K 1996 Phys. Rev. A 54 1342Google Scholar

    [120]

    Dyl D, Dziczek D, Piwinski M, Gradziel M, Srivastava R, Dygdala R S, Chwirot S 1999 J. Phys. B: Atom. Mol. Phys. 32 837Google Scholar

    [121]

    Srivastava R, Blumy K, McEachranz R P, Stauffer A D 1996 J. Phys. B: Atom. Mol. Phys. 29 3513Google Scholar

    [122]

    Sohn M, Hanne G F 1992 J. Phys. B: Atom. Mol. Phys. 25 4627Google Scholar

    [123]

    李博文, 蒋军, 董晨钟, 王建国, 丁晓彬 2009 物理学报 58 5274Google Scholar

    Li B W, Jiang J, Dong C Z, Wang J G, Ding X B 2009 Acta Phys. Sin. 58 5274Google Scholar

    [124]

    Whitten B L, Lane N F, Weisheit J C 1984 Phys. Rev. A 29 945Google Scholar

    [125]

    Murillo M S, Weisheit J C 1998 Phys. Rep. 302 1Google Scholar

    [126]

    Hu F 2021 Radiat. Phys. Chem. 180 109293Google Scholar

    [127]

    Pindzola M S, Loch S D, Colgan J, Fontes C J 2008 Phys. Rev. A 77 062707Google Scholar

    [128]

    Jiang J, Dong C Z, Xie L Y 2014 Chin. Phys. Lett. 31 023401Google Scholar

  • [1] 周旭, 王川, 胡荣豪, 陶治豪, 邓小良, 梁亦寒, 李晓亚, 吕蒙, 祝文军. 中高Z元素原子、离子的电子碰撞电离与激发截面快速计算方法. 物理学报, doi: 10.7498/aps.73.20240213
    [2] 杨威, 丁士缘, 孙保元. 基于实稳定方法的原子核单粒子共振相对论Hartree-Fock模型. 物理学报, doi: 10.7498/aps.73.20231632
    [3] 赵国栋, 曹进, 梁婷, 冯敏, 卢本全, 常宏. 镱原子超精细诱导5d6s 3D1,3→6s2 1S0 E2跃迁及超精细常数的精确计算. 物理学报, doi: 10.7498/aps.73.20240028
    [4] 王霞, 贾方石, 姚科, 颜君, 李冀光, 吴勇, 王建国. 类铝离子钟跃迁能级的超精细结构常数和朗德g因子. 物理学报, doi: 10.7498/aps.72.20230940
    [5] 张天成, 潘高远, 俞友军, 董晨钟, 丁晓彬. 超重元素Og(Z = 118)及其同主族元素的电离能和价电子轨道束缚能. 物理学报, doi: 10.7498/aps.71.20220813
    [6] 张祥, 卢本全, 李冀光, 邹宏新. Hg+离子5d106s 2S1/2→5d96s2 2D5/2钟跃迁同位素位移和超精细结构的理论研究. 物理学报, doi: 10.7498/aps.68.20182136
    [7] 李树. 光子与相对论麦克斯韦分布电子散射截面的蒙特卡罗计算方法. 物理学报, doi: 10.7498/aps.67.20180932
    [8] 余庚华, 颜辉, 高当丽, 赵朋义, 刘鸿, 朱晓玲, 杨维. 相对论多组态相互作用方法计算Mg+离子同位素位移. 物理学报, doi: 10.7498/aps.67.20171817
    [9] 张斌, 赵健, 赵增秀. 基于多组态含时Hartree-Fock方法研究电子关联对于H2分子强场电离的影响. 物理学报, doi: 10.7498/aps.67.20172701
    [10] 张婷贤, 李冀光, 刘建鹏. Al+离子3s2 1S0→3s3p 3,1P1o跃迁同位素偏移的理论研究. 物理学报, doi: 10.7498/aps.67.20172261
    [11] 余庚华, 刘鸿, 赵朋义, 徐炳明, 高当丽, 朱晓玲, 杨维. 采用相对论多组态Dirac-Hartree-Fock方法对Mg原子同位素位移的理论研究. 物理学报, doi: 10.7498/aps.66.113101
    [12] 焦飞, 蒋军, 颉录有, 张登红, 董晨钟, 陈展斌. Cd+离子5s2S1/2→5p2P3/2电子碰撞激发截面和退激辐射光子极化度的理论研究. 物理学报, doi: 10.7498/aps.64.233401
    [13] 青波, 程诚, 高翔, 张小乐, 李家明. 全相对论多组态原子结构及物理量的精密计算——构建准完备基以及组态相互作用. 物理学报, doi: 10.7498/aps.59.4547
    [14] 刘延君, 董晨钟, 蒋军, 颉录有. 电子与类铍N3+和O4+离子碰撞激发截面的相对论扭曲波计算. 物理学报, doi: 10.7498/aps.58.2320
    [15] 黄时中, 马 堃, 吴长义, 倪秀波. 氦原子1sns组态能量及其相对论修正. 物理学报, doi: 10.7498/aps.57.5469
    [16] 颉录有, 张志远, 董晨钟, 蒋 军. 高离化态类镍离子电子碰撞激发过程的相对论扭曲波理论研究. 物理学报, doi: 10.7498/aps.57.6249
    [17] 方泉玉, 蔡蔚, 沈智军, 李萍, 邹宇, 徐元光, 陈国新. 电子与高荷电离子碰撞激发的扭曲波截面. 物理学报, doi: 10.7498/aps.44.383
    [18] 屈一至, 仝晓民, 李家明. 电子与原子、离子碰撞过程的相对论效应. 物理学报, doi: 10.7498/aps.44.1719
    [19] 王宛珏. 类氮KⅩⅢ,CaⅪⅤ,ScⅩⅤ和TiⅩⅥ精细结构能级和跃迁波长的相对论多组态Dirac-Fock计算. 物理学报, doi: 10.7498/aps.41.726
    [20] 赵中新, 李家明. 非相对论性和相对论性原子组态相互作用理论——激发能量和辐射跃迁几率. 物理学报, doi: 10.7498/aps.34.1469
计量
  • 文章访问数:  202
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-20
  • 修回日期:  2024-12-02
  • 上网日期:  2024-12-25

/

返回文章
返回