-
本文利用多组态Dirac-Hartree-Fock方法对类碳等电子序列(Z=10,14,32,36,50) 1s22s22p2和1s22s2p3组态的能级结构和电偶极跃迁行为进行理论研究。在构建充分包含电子关联效应、规模适当的波函数后,考虑Breit相互作用、量子电动力学效应和原子核质量效应,比较分析了价-价关联效应、实-价关联效应和实-实关联效应对原子态激发能的影响,完成了原子态激发能的高精度理论计算。与其他理论结果相比,本文计算的Ne V离子的激发能结果与NIST(National Institute ofStandards and Technology)数据最为接近;其它离子的激发能也具有较好的精度。在此基础上,结合LS耦合的原子态混合成分和NIST数据,对出现的原子态命名情况进行分析,推测了相应的原子态命名。本文还计算了组态间电偶极跃迁的谱线波长、跃迁速率、线强和加权振子强度,Ne V和Si IX离子的谱线波长与NIST数据符合得很好,相对误差小于0.62%;跃迁速率与其它理论结果比较一致。另外,本文计算得到的Babushkin和Coulomb两种规范的电偶极跃迁参数具有良好的一致性,进一步证明了本文采用的理论方法的准确性和可靠性。
本文数据集可在科学数据银行数据库https://www.doi.org/[10.57760/sciencedb.j00213.00145]中访问获取。(https://www.scidb.cn/s/6NzMzi)The atomic energy level structures and transition properties of 1s22s22p2 ground configuration and 1s22s2p3 excited configuration in carbon-like ions with Z=10, 14, 32, 36, 50 are investigated theoretically with fully relativistic multi-configuration Dirac-Hartree-Fock (MCDHF) method.
Based on the wavefunction constructed with careful considerations of electron correlations, the theoretical calculations are completed with careful considerations of the Breit interaction, quantum electrodynamic effect and nuclear mass effect. Then the effects of three types of electron correlations, namely valence-valence, core-valence, and core-core correlations, on energy levels are studied in detail, and high-precision excitation energies are obtained. Compared with other theoretical results, the excitation energies for Ne V ion calculated are the closest to the NIST (National Institute of Standards and Technology) data, the excitation energies of other ions also possess relatively high precision. Additionally, combining the NIST data and the atomic state compositions of LS-coupling, the ambiguity in identifying atomic states generated from the code is analyzed, and the corresponding renamed atomic states are presented.
For electric dipole transitions, the transition wavelengths of Ne V and Si IX ions reported in this work and available NIST data have goodagreements, the relative errors are less than 0.62%. The transition rates of them are in good agreement with those of other theoretical results. And for majority of electric dipole transitions, the electric dipole transition parameters calculated in Babushkin and Coulomb gauges have excellent agreement with each other, which demonstrate the feasibility and reliability of the MCDHF method for theoretical calculations on energy structures and spectral properties of 1s22s22p2 and 1s22s2p3 configurations in carbon-like ions. The results presented cover a wide range of levels and transitions for carbon-like ions, it's expected that the data will enrich the fundamental database for carbon-like ions and provide valuable theoretical references for related studies.
The datasets presented in this paper are openly available at https://www.doi.org/[10.57760/sciencedb.j00213.00145](https://www.sci db.cn/s/6NzMzi)-
Keywords:
- carbon-like ion /
- MCDHF method /
- energy level /
- electric dipole transition
-
[1] Arav N, Edmonds D, Borguet B, Kriss G A, Kaastra J S, Behar E, Bianchi S, Cappi M, Costantini E, Detmers R G, Ebrero J, Mehdipour M, Paltani S, Petrucci P O, Pinto C, Ponti G, Steenbrugge K C, De Vries C P 2012 Astron. Astrophys. 544 A33
[2] Mao J, Kaastra J S, Mehdipour M, Raassen A J J, Gu L, Miller J M 2017 Astron. Astrophys. 607 A100
[3] Feldman U, Doschek G A 2007 At. Data Nucl. Data Tables 93 779
[4] Zatsarinny O, Gorczyca T W, Korista K T, Badnell N R, Savin D W 2004 Astron. Astrophys. 417 1173
[5] Curdt W, Landi E, Feldman U 2004 Astron. Astrophys. 427 1045
[6] Si R, Li S, Wang K, Guo X L, Chen Z B, Yan J, Chen, C Y, Brage T, Zou Y M 2017 Astron. Astrophys. 600 A85
[7] Ramsbottom C, Ballance C, Smyth R, Conroy A, Fernández-Menchero L, Turkington M, Keenan F 2018 Galaxies 6 90
[8] Belmonte M T, Pickering J C, Clear C P, Concepción Mairey F, Liggins F 2018 Galaxies 6 109
[9] Raju P K, Dwivedi B N, Gupta A K 1994 Sol. Phys. 149 289
[10] Lyubimkov L S 2013 Astrophysics 56 472
[11] Koutchmy S, Baudin F, Abdi S, Golub L, Sèvre F 2019 Astron. Astrophys. 632 A86
[12] Feldman U, Doschek G A, Mariska J T, Bhatia A K, Mason H E 1978 Astrophys. J. 226 674
[13] Vilkas M J, Martinson I, Merkelis G, Gaigalas G, Kisielius R 1996 Phys. Scr. 54 281
[14] Safronova U I, Shlyaptseva A S 1999 Phys. Scr. 60 36
[15] Aggarwal K M, Keenan F P, Msezane A Z 2003 Astron. Astrophys. 401 377
[16] Tachiev G, Froese Fischer C 2001 Can. J. Phys. 79 955
[17] Froese Fischer C, Tachiev G 2004 At. Data Nucl. Data Tables 87 1
[18] Gu M F 2005 At. Data Nucl. Data Tables 89 267
[19] Safronova U I, Ralchenko Y, Murakami I, Kato T, Kato D, 2006 Phys. Scr. 73 143
[20] Aggarwal K M, Keenan F P, Lawson K D 2008 At. Data Nucl. Data Tables 94 323
[21] Jönsson P, Bieroń J 2010 J. Phys. B: At. Mol. Opt. Phys. 43 074023
[22] Jönsson P, Rynkun P, Gaigalas G 2011 At. Data Nucl. Data Tables 97 648
[23] Liu H, Jiang G, Hu F, Wang C K, Wang Z B, Yang J M 2013 Chin. Phys. B 22 073202
[24] Ekman J, Jönsson P, Gustafsson S, Hartman H, Gaigalas G, Godefroid M R, Froese Fischer C 2014 Astron. Astrophys. 564 A24
[25] Nazé C, Verdebout S, Rynkun P, Gaigalas G, Godefroid M, Jönsson P 2014 At. Data Nucl. Data Tables 100 1197
[26] Wang K, Li D F, Liu H T, Han X Y, Duan B, Li C Y, Li J G, Guo X L, Chen C Y, Yan J 2014 Astrophys. J. Suppl. Ser. 215 26
[27] Alwadie N, Almodlej A, Ben Nessib N, Dimitrijević M S 2020 Contrib. Astron. Obs. Skalnaté Pleso 50 86
[28] Almodlej A, Alrashed H, Ben Nessib N, Dimitrijević M S 2021 Mon. Not. R. Astron. Soc. 507 3228
[29] Tang W, Deng B L, Zhang G S, Meng B, Yang R, Wang S 2025 Indian J. Phys. 99 793
[30] Fricke B 1984 Phys. Scr. 1984 129
[31] Fritzsche S 2002 Phys. Scr. 2002 37
[32] Grant I P 2007 Relativistic quantum theory of atoms and molecules: theory and computation (New York: Springer New York) pp384-431
[33] Froese Fischer C, Gaigalas G, Jönsson P, Bieroń J 2019 Comput. Phys. Commun. 237 184
[34] Zeng J Y 1981 Advanced Quantum Mechanics VI (Beijing: Science Press) pp389-407
[35] Cao M X 2019 M.S. Dissertation (Lanzhou: Northwest Normal University) (in Chinese)[曹铭欣 2019 硕士学位论文 (兰州:西北师范大学)]
[36] Borschevsky A, Pašteka L F, Pershina V, Eliav E, Kaldor U 2015 Phys. Rev. A 91 020501
[37] Gaston N, Schwerdtfeger P, Nazarewicz W 2002 Phys. Rev. A 66 062505
[38] Glushkov A V, Ambrosov S V, Loboda A, Chernyakova Y G, Khetselius O Y, Svinarenko A A 2004 Nucl. Phys. A 734 E21
[39] Grant I P 1974 J. Phys. B: Atom. Mol. Phys. 7 1458
[40] Kramida A, Ralchenko Y, Reader J, NIST ASD Team (2024) https://www.nist.gov/pml/atomic-spectra-database [2024-6-5]
[41] McIntyre Jr L C, Donahue D J, Bernstein E M 1978 Phys. Scr. 17 5
[42] Kramida A 2024 Eur. Phys. J. D 78 36
[43] Froese Fischer C, Tachiev G 2004 At. Data Nucl. Data Tables 87 1
[44] Chen M H, Reed K J, McWilliams D M, Guo D S, Barlow L, Lee M, Walker V 1997 At. Data Nucl. Data Tables 65 289
计量
- 文章访问数: 24
- PDF下载量: 0
- 被引次数: 0