搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类碳离子(Z=10,14,32,36,50) 1s22s22p2和1s22s2p3组态的能级和电偶极跃迁

胡木宏 何纪铮

引用本文:
Citation:

类碳离子(Z=10,14,32,36,50) 1s22s22p2和1s22s2p3组态的能级和电偶极跃迁

胡木宏, 何纪铮

Energy levels and electric dipole transitions of 1s22s22p2 and 1s22s2p3 configurations in carbon-like ions(Z=10,14,32,36,50)

HU Muhong, He Jizheng
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文利用多组态Dirac-Hartree-Fock方法对类碳等电子序列(Z=10,14,32,36,50) 1s22s22p2和1s22s2p3组态的能级结构和电偶极跃迁行为进行理论研究。在构建充分包含电子关联效应、规模适当的波函数后,考虑Breit相互作用、量子电动力学效应和原子核质量效应,比较分析了价-价关联效应、实-价关联效应和实-实关联效应对原子态激发能的影响,完成了原子态激发能的高精度理论计算。与其他理论结果相比,本文计算的Ne V离子的激发能结果与NIST(National Institute ofStandards and Technology)数据最为接近;其它离子的激发能也具有较好的精度。在此基础上,结合LS耦合的原子态混合成分和NIST数据,对出现的原子态命名情况进行分析,推测了相应的原子态命名。本文还计算了组态间电偶极跃迁的谱线波长、跃迁速率、线强和加权振子强度,Ne V和Si IX离子的谱线波长与NIST数据符合得很好,相对误差小于0.62%;跃迁速率与其它理论结果比较一致。另外,本文计算得到的Babushkin和Coulomb两种规范的电偶极跃迁参数具有良好的一致性,进一步证明了本文采用的理论方法的准确性和可靠性。
    本文数据集可在科学数据银行数据库https://www.doi.org/[10.57760/sciencedb.j00213.00145]中访问获取。(https://www.scidb.cn/s/6NzMzi)
    The atomic energy level structures and transition properties of 1s22s22p2 ground configuration and 1s22s2p3 excited configuration in carbon-like ions with Z=10, 14, 32, 36, 50 are investigated theoretically with fully relativistic multi-configuration Dirac-Hartree-Fock (MCDHF) method.
    Based on the wavefunction constructed with careful considerations of electron correlations, the theoretical calculations are completed with careful considerations of the Breit interaction, quantum electrodynamic effect and nuclear mass effect. Then the effects of three types of electron correlations, namely valence-valence, core-valence, and core-core correlations, on energy levels are studied in detail, and high-precision excitation energies are obtained. Compared with other theoretical results, the excitation energies for Ne V ion calculated are the closest to the NIST (National Institute of Standards and Technology) data, the excitation energies of other ions also possess relatively high precision. Additionally, combining the NIST data and the atomic state compositions of LS-coupling, the ambiguity in identifying atomic states generated from the code is analyzed, and the corresponding renamed atomic states are presented.
    For electric dipole transitions, the transition wavelengths of Ne V and Si IX ions reported in this work and available NIST data have goodagreements, the relative errors are less than 0.62%. The transition rates of them are in good agreement with those of other theoretical results. And for majority of electric dipole transitions, the electric dipole transition parameters calculated in Babushkin and Coulomb gauges have excellent agreement with each other, which demonstrate the feasibility and reliability of the MCDHF method for theoretical calculations on energy structures and spectral properties of 1s22s22p2 and 1s22s2p3 configurations in carbon-like ions. The results presented cover a wide range of levels and transitions for carbon-like ions, it's expected that the data will enrich the fundamental database for carbon-like ions and provide valuable theoretical references for related studies.
    The datasets presented in this paper are openly available at https://www.doi.org/[10.57760/sciencedb.j00213.00145](https://www.sci db.cn/s/6NzMzi)
  • [1]

    Arav N, Edmonds D, Borguet B, Kriss G A, Kaastra J S, Behar E, Bianchi S, Cappi M, Costantini E, Detmers R G, Ebrero J, Mehdipour M, Paltani S, Petrucci P O, Pinto C, Ponti G, Steenbrugge K C, De Vries C P 2012 Astron. Astrophys. 544 A33

    [2]

    Mao J, Kaastra J S, Mehdipour M, Raassen A J J, Gu L, Miller J M 2017 Astron. Astrophys. 607 A100

    [3]

    Feldman U, Doschek G A 2007 At. Data Nucl. Data Tables 93 779

    [4]

    Zatsarinny O, Gorczyca T W, Korista K T, Badnell N R, Savin D W 2004 Astron. Astrophys. 417 1173

    [5]

    Curdt W, Landi E, Feldman U 2004 Astron. Astrophys. 427 1045

    [6]

    Si R, Li S, Wang K, Guo X L, Chen Z B, Yan J, Chen, C Y, Brage T, Zou Y M 2017 Astron. Astrophys. 600 A85

    [7]

    Ramsbottom C, Ballance C, Smyth R, Conroy A, Fernández-Menchero L, Turkington M, Keenan F 2018 Galaxies 6 90

    [8]

    Belmonte M T, Pickering J C, Clear C P, Concepción Mairey F, Liggins F 2018 Galaxies 6 109

    [9]

    Raju P K, Dwivedi B N, Gupta A K 1994 Sol. Phys. 149 289

    [10]

    Lyubimkov L S 2013 Astrophysics 56 472

    [11]

    Koutchmy S, Baudin F, Abdi S, Golub L, Sèvre F 2019 Astron. Astrophys. 632 A86

    [12]

    Feldman U, Doschek G A, Mariska J T, Bhatia A K, Mason H E 1978 Astrophys. J. 226 674

    [13]

    Vilkas M J, Martinson I, Merkelis G, Gaigalas G, Kisielius R 1996 Phys. Scr. 54 281

    [14]

    Safronova U I, Shlyaptseva A S 1999 Phys. Scr. 60 36

    [15]

    Aggarwal K M, Keenan F P, Msezane A Z 2003 Astron. Astrophys. 401 377

    [16]

    Tachiev G, Froese Fischer C 2001 Can. J. Phys. 79 955

    [17]

    Froese Fischer C, Tachiev G 2004 At. Data Nucl. Data Tables 87 1

    [18]

    Gu M F 2005 At. Data Nucl. Data Tables 89 267

    [19]

    Safronova U I, Ralchenko Y, Murakami I, Kato T, Kato D, 2006 Phys. Scr. 73 143

    [20]

    Aggarwal K M, Keenan F P, Lawson K D 2008 At. Data Nucl. Data Tables 94 323

    [21]

    Jönsson P, Bieroń J 2010 J. Phys. B: At. Mol. Opt. Phys. 43 074023

    [22]

    Jönsson P, Rynkun P, Gaigalas G 2011 At. Data Nucl. Data Tables 97 648

    [23]

    Liu H, Jiang G, Hu F, Wang C K, Wang Z B, Yang J M 2013 Chin. Phys. B 22 073202

    [24]

    Ekman J, Jönsson P, Gustafsson S, Hartman H, Gaigalas G, Godefroid M R, Froese Fischer C 2014 Astron. Astrophys. 564 A24

    [25]

    Nazé C, Verdebout S, Rynkun P, Gaigalas G, Godefroid M, Jönsson P 2014 At. Data Nucl. Data Tables 100 1197

    [26]

    Wang K, Li D F, Liu H T, Han X Y, Duan B, Li C Y, Li J G, Guo X L, Chen C Y, Yan J 2014 Astrophys. J. Suppl. Ser. 215 26

    [27]

    Alwadie N, Almodlej A, Ben Nessib N, Dimitrijević M S 2020 Contrib. Astron. Obs. Skalnaté Pleso 50 86

    [28]

    Almodlej A, Alrashed H, Ben Nessib N, Dimitrijević M S 2021 Mon. Not. R. Astron. Soc. 507 3228

    [29]

    Tang W, Deng B L, Zhang G S, Meng B, Yang R, Wang S 2025 Indian J. Phys. 99 793

    [30]

    Fricke B 1984 Phys. Scr. 1984 129

    [31]

    Fritzsche S 2002 Phys. Scr. 2002 37

    [32]

    Grant I P 2007 Relativistic quantum theory of atoms and molecules: theory and computation (New York: Springer New York) pp384-431

    [33]

    Froese Fischer C, Gaigalas G, Jönsson P, Bieroń J 2019 Comput. Phys. Commun. 237 184

    [34]

    Zeng J Y 1981 Advanced Quantum Mechanics VI (Beijing: Science Press) pp389-407

    [35]

    Cao M X 2019 M.S. Dissertation (Lanzhou: Northwest Normal University) (in Chinese)[曹铭欣 2019 硕士学位论文 (兰州:西北师范大学)]

    [36]

    Borschevsky A, Pašteka L F, Pershina V, Eliav E, Kaldor U 2015 Phys. Rev. A 91 020501

    [37]

    Gaston N, Schwerdtfeger P, Nazarewicz W 2002 Phys. Rev. A 66 062505

    [38]

    Glushkov A V, Ambrosov S V, Loboda A, Chernyakova Y G, Khetselius O Y, Svinarenko A A 2004 Nucl. Phys. A 734 E21

    [39]

    Grant I P 1974 J. Phys. B: Atom. Mol. Phys. 7 1458

    [40]

    Kramida A, Ralchenko Y, Reader J, NIST ASD Team (2024) https://www.nist.gov/pml/atomic-spectra-database [2024-6-5]

    [41]

    McIntyre Jr L C, Donahue D J, Bernstein E M 1978 Phys. Scr. 17 5

    [42]

    Kramida A 2024 Eur. Phys. J. D 78 36

    [43]

    Froese Fischer C, Tachiev G 2004 At. Data Nucl. Data Tables 87 1

    [44]

    Chen M H, Reed K J, McWilliams D M, Guo D S, Barlow L, Lee M, Walker V 1997 At. Data Nucl. Data Tables 65 289

  • [1] 王霞, 贾方石, 姚科, 颜君, 李冀光, 吴勇, 王建国. 类铝离子钟跃迁能级的超精细结构常数和朗德g因子. 物理学报, doi: 10.7498/aps.72.20230940
    [2] 李向富, 朱晓禄, 蒋刚. 等离子体对电子间相互作用的屏蔽效应研究. 物理学报, doi: 10.7498/aps.72.20222339
    [3] 马堃, 陈展斌, 黄时中. 等离子体屏蔽效应对Ar16+基态和激发态能级的影响. 物理学报, doi: 10.7498/aps.68.20181915
    [4] 牟致栋. Rh XIII—Cd XVI离子4s24p3—4s4p4能级与跃迁的理论计算. 物理学报, doi: 10.7498/aps.68.20181976
    [5] 乔亮, 羊富贵, 武永华, 柯友刚, 夏忠朝. Tm,Ho双掺调Q激光系统理论与实验研究. 物理学报, doi: 10.7498/aps.63.214205
    [6] 何恩节, 郑海荣, 高伟, 鹿盈, 李俊娜, 魏映, 王灯, 朱刚强. 锰离子对镥基纳米晶体的荧光调控与增强. 物理学报, doi: 10.7498/aps.62.237803
    [7] 蒋利娟, 张现周, 马欢强, 贾光瑞, 张永慧, 夏立华. 啁啾微波场中里德伯钠原子高激发态的布居跃迁. 物理学报, doi: 10.7498/aps.61.043101
    [8] 刘尚宗, 颉录有, 丁晓彬, 董晨钟. 相对论效应对类锂离子能级结构及辐射跃迁性质的影响. 物理学报, doi: 10.7498/aps.61.093106
    [9] 程萍, 张玉明, 张义门. 退火对非故意掺杂4H-SiC外延材料386 nm和388 nm发射峰的影响. 物理学报, doi: 10.7498/aps.60.017103
    [10] 胡峰, 杨家敏, 王传珂, 张继彦, 蒋刚, 朱正和. 电子关联效应对金离子的影响. 物理学报, doi: 10.7498/aps.60.103104.1
    [11] 李德俊, 米贤武, 邓科. 一维铁磁链中量子孤波的能级和磁矩. 物理学报, doi: 10.7498/aps.59.7344
    [12] 李博文, 蒋军, 董晨钟, 王建国, 丁晓彬. 等离子体屏蔽效应对类氢离子能级结构和辐射跃迁性质的影响. 物理学报, doi: 10.7498/aps.58.5274
    [13] 杜 泉, 王 玲, 谌晓洪, 高 涛. VOn±(n=0,1,2)的势能函数与光谱常数研究. 物理学报, doi: 10.7498/aps.55.6308
    [14] 牟致栋, 魏琦瑛, 陈涤缨. RhXⅢ,PdXⅣ和AgXV离子4s24p3—4s24p25s跃迁的扩展分析. 物理学报, doi: 10.7498/aps.55.4070
    [15] 曾雄辉, 赵广军, 张连翰, 何晓明, 杭 寅, 李红军, 徐 军. 铝酸镧单晶体中Ce3+的能级结构和荧光特性. 物理学报, doi: 10.7498/aps.54.612
    [16] 侯春风, 郭汝海. 椭圆柱形量子点的能级结构. 物理学报, doi: 10.7498/aps.54.1972
    [17] 王翀, 闫珂柱. 简谐势阱中非理想气体玻色-爱因斯坦凝聚转变温度的数值研究. 物理学报, doi: 10.7498/aps.53.1284
    [18] 朱嘉琦, 王景贺, 孟松鹤, 韩杰才, 张连生. 不同能级加速过滤电弧沉积四面体非晶碳膜的结构和性能. 物理学报, doi: 10.7498/aps.53.1150
    [19] 毛华平, 王红艳, 唐永建, 朱正和, 郑少涛. 电荷对Cu2n±(n=0,1,2)分子离子的势能函数和能级的影响. 物理学报, doi: 10.7498/aps.53.37
    [20] 尹 民, J.C. KRUPA. 光谱探针法确定Eu3+:ThO2的格位对称性及选择激发下样品的光致发光研究. 物理学报, doi: 10.7498/aps.49.1859
计量
  • 文章访问数:  24
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-17

/

返回文章
返回