搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体屏蔽效应对Ar16+基态和激发态能级的影响

马堃 陈展斌 黄时中

引用本文:
Citation:

等离子体屏蔽效应对Ar16+基态和激发态能级的影响

马堃, 陈展斌, 黄时中

Influence of plasma shielding effect on ground state and excited state energies of Ar16+

Ma Kun, Chen Zhan-Bin, Huang Shi-Zhong
PDF
HTML
导出引用
  • 基于Rayleigh-Ritz变分原理, 发展了一套处理弱耦合等离子体环境中多电子原子(离子)非相对论能量及其相对论修正的解析方法. 通过考虑电子间交换相互作用以及内外壳层电子的屏蔽效应, 计算了Ar16+基态1s2 1S、单激发态1sns 1,3S (n = 2—5), 1snp 1,3P (n = 2—5) 和双激发态2snp 1P (n = 2—5)非相对论能量及其相对论修正值(包括质量修正、单体和双体达尔文修正以及自旋-自旋接触相互作用项), 讨论了等离子体屏蔽效应对能级的影响. 结果表明: 相对论质量修正和第一类达尔文修正占主导, 比其他相对论修正项高出三个数量级. 此外, 等离子体屏蔽效应具有明显的态选择性, 屏蔽效应对外壳层电子的影响大于内壳层电子, 随着等离子体屏蔽参数的增加, 外壳层电子轨道向外延展, 激发态越高, 延展程度越大.
    A systematical knowledge of the atomic properties in plasma is of great interest for various research areas, such as the explanation of the X-ray radiation from universe, plasma diagnostics, extreme ultraviolet (EUV) and X-ray sources and so on. Among these researches, the detailed information about how the plasma influences the atomic energy level and transition spectrum are crucial for understanding the X-ray emission mechanism and the state of plasma. An analytic calculation method of treating the non-relativistic energy and its relativistic corrections for the multi-electron atoms embedded in weakly coupled plasma is developed based on the Rayleigh-Ritz variation method. The systematical investigations are performed for the ground state 1s2 1S, single excited states 1sns 1,2S (n = 2−5), 1snp 1,3P (n = 2−5) and double excited state 2s2p 1P of Ar16+ ion in weak coupled plasma. The analytic formulas for calculating the non-relativistic energy and its relativistic correction energy are derived, which include mass correction, one and two-body Darwin correction, spin-spin contact interaction and orbit-orbit interaction. All the angular integration spin sums involved in the problem are worked out explicitly by using the irreducible theory. The influence of plasma on non-relativistic energy and relativistic correction energy are discussed. The results show that the mass correction and the one-body Darwin correction are the main ones among the terms of relativistic correction, and are three orders of magnitude greater than the other relativistic terms. The plasma shielding effect mainly affects the non-relativistic energy, and has little effect on the relativistic correction. At the same time, it has a more significant selectivity for the electronic configuration. Further research shows that the influence of plasma on the energy of the outer shell electron is greater than that of the inner shell electron. With the increase of the plasma shielding parameters, the outer shell electron extends outward, and the higher the excited state, the greater the degree of extension is. This work should be useful for astrophysical applications where such a plasma environment exists.
      通信作者: 马堃, makun@hsu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11804112, 11504421)、安徽省自然科学基金(批准号: 1808085QA22)、安徽省高校优秀青年人才支持计划重点项目(批准号: gxyqZD2016301)和安徽省高校自然科学研究项目(批准号: KJHS2015B01)资助的课题.
      Corresponding author: Ma Kun, makun@hsu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804112, 11504421), the Natural Science Foundation of Anhui Province, China (Grant No. 1808085QA22), the Key Project for Young Talents in College of Anhui Province, China (Grant No. gxyqZD2016301), and the Natural Science Foundation of the Higher Education Institutions of Anhui Province, China (Grant No. KJHS2015B01).
    [1]

    Debye P, Hückel E 1923 Z. Phys. 24 185

    [2]

    Shukla P K, Eliasson B 2008 Phys. Lett. A 372 2897Google Scholar

    [3]

    Chen Z B, Hu H W, Ma K, Liu X B, Guo X L, Li S, Zhu B H, Huang L, Wang K 2018 Phys. Plasmas 25 032108Google Scholar

    [4]

    Ray D 2000 Phys. Rev. E 62 4126Google Scholar

    [5]

    Wu Z Q, Han G X, Yan J, Pang J Q 2002 J. Phys. B 35 2305Google Scholar

    [6]

    Das M 2014 Phys. Plasmas 21 012709Google Scholar

    [7]

    Li Y Q, Wu J H, Hou Y, Yuan J M 2008 J. Phys. B 41 145002Google Scholar

    [8]

    Saha B, Fritzsche S 2007 J. Phys. B 40 259Google Scholar

    [9]

    Belkhiri M, Fontes C J, Poirier M 2015 Phys. Rev. A 92 032501Google Scholar

    [10]

    Fernley J A, Taylor K T, Seaton M J 1987 J. Phys. B 20 6457Google Scholar

    [11]

    Peach G, Saraph H E, Seaton M J 1988 J. Phys. B 21 3669Google Scholar

    [12]

    Fernley J A, Taylor K T, Seaton M J 1987 J. Phys. B 20 6457Google Scholar

    [13]

    Kaspi S, Brandt W N, Netzer H, Sambruna R, Chartas G, Garmire G P, Nousek J A 2000 Astrophys. J. Lett. 535 L17Google Scholar

    [14]

    Saha B, Bhattacharyya S, Mukherjee T K, Mukherjee P K 2003 Int. J. Quantum Chem. 92 413Google Scholar

    [15]

    Costa A M, Martins M C, Parente F, Santos J P, Indelicato P 2001 Atom. Data Nucl. Dat. 79 223Google Scholar

    [16]

    Goryaev F F, Vainshtein L A, Urnov A M 2017 Atom. Data Nucl. Dat. 113 117Google Scholar

    [17]

    Saha J K, Bhattacharyya S, Mukherjee T K, Mukherjee P K 2010 J. Quant. Spectrosc. Radiat. Transfer 111 675Google Scholar

    [18]

    Fang T K, Wu C S, Gao X, Chang T N 2017 Phys. Rev. A 96 052502Google Scholar

    [19]

    Kar S, Ho Y K 2005 Chem. Phys. Lett. 402 544Google Scholar

    [20]

    Xie L Y, Wang J G, Janev R K, Qu Y Z, Dong C Z 2012 Eur. Phys. J. D 66 125Google Scholar

    [21]

    Chen Z B 2017 Phys. Plasmas 24 122119Google Scholar

    [22]

    Chen Z B, Ma K, Hu H W, Wang K 2018 Phys. Plasmas 25 072120Google Scholar

    [23]

    Chaudhuri S K, Mukherjee P K, Fricke B 2017 Eur. Phys. J. D 71 71Google Scholar

    [24]

    Hu H W, Chen Z B, Chen W C 2016 Radiat. Eff. Defect. S. 171 890Google Scholar

    [25]

    Ray D, Mukherjee P K 1998 J. Phys. B 31 3479Google Scholar

    [26]

    Ray D, Mukherjee P K 1998 Eur. Phys. J. D 2 89Google Scholar

  • 图 1  A16+ 1s2 1S, 1s2s 1,3S, 1s2p 1,3P和2s2p 1P 的相对论修正能量随参数u的变化

    Fig. 1.  Relativistic corrections against parameter u for 1s2 1S, 1s2s 1,3S, 1s2p 1,3P and 2s2p 1P of Ar16+.

    图 2  等离子能级偏移与参数u之间的关系

    Fig. 2.  Plasma energy shifts against parameter u.

    图 3  内外壳层电子径向波函数模方

    Fig. 3.  Module of radial wave functions for inner and outer shell electron.

    表 1  相对论修正对C4+基态1s2 1S能级的影响(单位: a.u.)

    Table 1.  Effects of relativistic correction on ground state 1s2 1S energies level in C4+ (unit: a.u.).

    u${\alpha _{1{\rm{s}}}}$ENREMCED1ΔERSETRef.[20]Ref.[25,26]
    05.6875−32.3477−0.06965080.0587822−0.01087−32.35857−32.4176−32.3612
    0.15.68614−31.1633−0.06958430.0587401−0.01084−31.17414−31.2324−31.177
    0.25.68218−30.0095−0.06939050.0586174−0.01077−30.02027−30.079−30.0237
    0.35.67577−28.8854−0.06907810.0584193−0.01066−28.89606−28.9557
    0.45.66706−27.7899−0.06865490.0581507−0.01050−27.80040−27.8614
    0.55.65616−26.7223−0.06812820.0578158−0.01031−26.73261−26.7963−26.7395
    0.65.64318−25.6817−0.0675050.0574187−0.01009−25.69179−25.7576
    0.75.62821−24.6674−0.06679160.0569630−0.00983−24.67723−24.7457
    0.85.61134−23.6788−0.06599420.0564522−0.00954−23.68834−23.7006−23.7594
    0.95.59263−22.7151−0.06511860.0558895−0.00923−22.72433−22.7986
    1.05.57215−21.7758−0.06417010.0552778−0.00889−21.78469−21.8629
    下载: 导出CSV

    表 2  Ar16+ 1sns, 1snp和2s2p组态变分参数

    Table 2.  Variation parameters of 1sns, 1snp and 2snp configurations in Ar16+.

    2S+1n1sns 2S+1S1snp 2S+1P2snp 2S+1P
    ${\alpha _{1{\rm{s}}}}$${\alpha _{n{\rm{s}}}}$ENR${\alpha _{1{\rm{s}}}}$${\alpha _{n{\rm{p}}}}$ENR${\alpha _{2{\rm{s}}}}$${\alpha _{n{\rm{p}}}}$ENR
    1117.6875−312.848
    217.932417.3433−198.38418.010716.9176−197.96917.411317.8229−77.601
    317.981517.2194−178.1418.000816.9725−178.01817.942817.2934−56.8575
    417.992417.1623−171.06818.000116.9852−171.01717.976617.2143−49.655
    517.996117.129−167.7991816.9901−167.77317.988217.1692−46.3425
    3218.013717.1931−199.19617.957717.266−198.504
    318.003117.1286−178.35517.9917.1509−178.162
    418.001217.0962−171.15517.996117.1079−171.076
    518.000617.0768−167.84317.998117.0845−167.803
    下载: 导出CSV

    表 3  Ar16+基态1s2 1S相对论性能量(单位: a.u.)

    Table 3.  Relativistic correction on ground state 1s2 1S energies level in Ar16+ (unit: a.u.).

    u${\alpha _{1{\rm{s}}}}$ENREMCED1ΔERSET
    017.6875−312.848−6.514885.30399−1.21089−314.05889
    0.117.6871−309.263−6.514255.30360−1.21065−310.47365
    0.217.6858−305.708−6.512385.30246−1.20992−306.91792
    0.317.6837−302.184−6.509295.30057−1.20872−303.39272
    0.417.6808−298.688−6.505015.29796−1.20705−299.89505
    0.517.6771−295.222−6.499575.29463−1.20494−296.42694
    0.617.6726−291.785−6.492995.29061−1.20238−292.98738
    0.717.6674−288.377−6.485305.28591−1.19939−289.57639
    0.817.6614−284.997−6.476525.28055−1.19597−286.19297
    0.917.6547−281.645−6.466685.27453−1.19215−282.83715
    1.017.6473−278.32−6.455805.26787−1.18793−279.50793
    下载: 导出CSV

    表 8  Ar16+基态2s2p 1P相对论性能量(单位: a.u.)

    Table 8.  Relativistic correction on excited state 2s2p 1P energies level in Ar16+ (unit: a.u.).

    u${\alpha _{2{\rm{s}}}}$${\alpha _{2{\rm{p}}}}$ENREMCED1ED2ESSCEOOΔERSET
    017.411317.8229−77.6010−0.594990.31621−8.39310 × 10−41.67862 × 10−3−0.0006009−0.27854−77.87954
    0.117.404317.8174−74.0566−0.594060.31583−8.38360 × 10−41.67672 × 10−3−6.00393 × 10−4−0.27800−74.33460
    0.217.383917.8014−70.6207−0.591390.31472−8.35602 × 10−41.67120 × 10−3−5.98927 × 10−4−0.27644−70.89714
    0.317.35117.7755−67.2898−0.587110.31294−8.31163 × 10−41.66233 × 10−3−5.96551 × 10−4−0.27393−67.56373
    0.417.306417.7402−64.0605−0.581320.31053−8.25157 × 10−41.65031 × 10−3−5.93313 × 10−4−0.27055−64.33105
    0.517.250817.6959−60.9298−0.574150.30754−8.17686 × 10−41.63537 × 10−3−5.89259 × 10−4−0.26637−61.19617
    0.617.184517.6429−57.8948−0.565690.30401−8.08845 × 10−41.61769 × 10−3−5.84432 × 10−4−0.26146−58.15626
    0.717.108117.5816−54.9531−0.556060.29998−7.98720 × 10−41.59744 × 10−3−5.78871 × 10−4−0.25586−55.20896
    0.817.021917.5122−52.1022−0.545340.29546−7.87391 × 10−41.57478 × 10−3−5.72611 × 10−4−0.24966−52.35186
    0.916.926217.4349−49.3398−0.533610.29051−7.74933 × 10−41.54987 × 10−3−5.65688 × 10−4−0.24289−49.58269
    1.016.821317.3499−46.6639−0.520980.28514−7.61414 × 10−41.52283 × 10−3−5.58134 × 10−4−0.23563−46.89953
    下载: 导出CSV

    表 4  Ar16+激发态1s2s 1S相对论性能量(单位: a.u.)

    Table 4.  Relativistic correction on excited state 1s2s 1S energies level in Ar16+ (unit: a.u.).

    u${\alpha _{1{\rm{s}}}}$${\alpha _{2{\rm{s}}}}$ENREMCED1ED2ESSCΔERSET
    017.932417.3433−198.384−3.930943.07620−7.249983 × 10−31.450003 × 10−2−0.84749−199.23149
    0.117.931917.3364−194.822−3.929823.07562−7.245793 × 10−31.44916 × 10−2−0.84695−195.66895
    0.217.930617.3164−191.335−3.926573.07394−7.233613 × 10−31.44672 × 10−2−0.84540−192.18040
    0.317.928517.284−187.921−3.921303.07121−7.213953 × 10−31.44279 × 10−2−0.84288−188.76388
    0.417.925617.2401−184.577−3.914153.06749−7.187233 × 10−31.43745 × 10−2−0.83947−185.41647
    0.517.921817.1852−181.301−3.905223.06284−7.153833 × 10−31.43077 × 10−2−0.83523−182.13623
    0.617.917317.1198−178.092−3.894623.05729−7.114063 × 10−31.42281 × 10−2−0.83022−178.92222
    0.717.91217.0445−174.947−3.882453.05090−7.068203 × 10−31.41364 × 10−2−0.82448−175.77148
    0.817.90616.9594−171.866−3.868803.04371−7.016463 × 10−31.40329 × 10−2−0.81807−172.68407
    0.917.899216.865−168.847−3.853773.03575−6.959053 × 10−31.39181 × 10−2−0.81106−169.65806
    1.017.891816.7615−165.889−3.837453.02706−6.896133 × 10−31.37923 × 10−2−0.80349−166.69249
    下载: 导出CSV

    表 5  Ar16+激发态1s2s 3S相对论性能量(单位: a.u.)

    Table 5.  Relativistic correction on excited state 1s2s 3S energies level in Ar16+ (unit: a.u.).

    u${\alpha _{1{\rm{s}}}}$${\alpha _{2{\rm{s}}}}$ENREMCED1ΔERSET
    018.013717.1931−199.196−3.977033.10590−0.87113−200.06713
    0.118.013317.1858−195.635−3.975943.10534−0.87060−196.50560
    0.218.012217.1646−192.149−3.972763.10370−0.86906−193.01806
    0.318.010417.1305−188.735−3.967613.10104−0.86657−189.60157
    0.418.007817.0841−185.392−3.960623.09742−0.86320−186.25520
    0.518.004617.0263−182.119−3.951893.09289−0.85900−182.97800
    0.618.000616.9574−178.912−3.941523.08748−0.85404−179.76604
    0.717.99616.878−175.77−3.929623.08124−0.84838−176.61838
    0.817.990716.7885−172.692−3.916273.07421−0.84206−173.53406
    0.917.984716.6891−169.676−3.901563.06643−0.83513−170.51113
    1.017.978116.5803−166.721−3.885573.05792−0.82765−167.54865
    下载: 导出CSV

    表 6  Ar16+激发态1s2p 1P相对论性能量(单位: a.u.)

    Table 6.  Relativistic correction on excited state 1s2p 1P energies level in Ar16+ (unit: a.u.).

    u${\alpha _{1{\rm{s}}}}$${\alpha _{2{\rm{p}}}}$ENREMCED1ED2ESSCEOOΔERSET
    018.010716.9176−197.969−3.581672.80005−2.073823 × 10−34.147643 × 10−3−0.0064010−0.78595−198.75495
    0.118.010316.9115−194.403−3.581232.79986−2.071283 × 10−34.142563 × 10−3−6.394563 × 10−3−0.78569−195.18869
    0.218.009116.8936−190.903−3.579942.79929−2.063883 × 10−34.127763 × 10−3−6.375753 × 10−3−0.78496−191.68796
    0.318.00716.8646−187.467−3.577822.79834−2.051933 × 10−34.103873 × 10−3−6.345353 × 10−3−0.78377−188.25077
    0.418.004216.8251−184.094−3.574902.79703−2.035733 × 10−34.071453 × 10−3−6.304033 × 10−3−0.78214−184.87614
    0.518.000716.7755−180.783−3.571212.79536−2.015513 × 10−34.031023 × 10−3−6.252373 × 10−3−0.78009−181.56309
    0.617.996316.7162−177.532−3.566772.79335−1.991533 × 10−33.983063 × 10−3−6.190923 × 10−3−0.77762−178.30962
    0.717.991316.6477−174.339−3.561612.79099−1.963993 × 10−33.927983 × 10−3−6.120133 × 10−3−0.77478−175.11378
    0.817.985516.57−171.203−3.555742.78830−1.933093 × 10−33.866193 × 10−3−6.040453 × 10−3−0.77155−171.97455
    0.917.97916.4835−168.124−3.549192.78527−1.899033 × 10−33.798063 × 10−3−5.952253 × 10−3−0.76797−168.89197
    1.017.971816.3883−165.101−3.541982.78193−1.861983 × 10−33.723953 × 10−3−5.855883 × 10−3−0.76404−165.86504
    下载: 导出CSV

    表 7  Ar16+基态1s2p 3P相对论性能量(单位: a.u.)

    Table 7.  Relativistic correction on excited state 1s2p 3P energies level in Ar16+ (unit: a.u.).

    u${\alpha _{1{\rm{s}}}}$${\alpha _{2{\rm{p}}}}$ENREMCED1EOOΔERSET
    017.957717.266−198.504−3.547362.775396.7643 × 10−3−0.76521−199.26921
    0.117.957317.26−194.937−3.546942.775226.75783 × 10−3−0.76496−195.70196
    0.217.956217.2424−191.436−3.545712.774696.738923 × 10−3−0.76428−192.20028
    0.317.954317.2138−187.998−3.543692.773816.70833 × 10−3−0.76317−188.76117
    0.417.951717.1749−184.622−3.540912.772606.66673 × 10−3−0.76164−185.38364
    0.517.948317.1261−181.306−3.537392.771066.61473 × 10−3−0.75972−182.06572
    0.617.944317.0678−178.05−3.533152.769196.55273 × 10−3−0.75741−178.80741
    0.717.939617.0002−174.852−3.528222.767006.48123 × 10−3−0.75474−175.60674
    0.817.934216.9237−171.71−3.522622.764506.40083 × 10−3−0.75172−172.46172
    0.917.928116.8384−168.624−3.5163702.761706.31163 × 10−3−0.74836−169.37236
    1.017.921416.7445−165.593−3.5094902.758596.21423 × 10−3−0.74469−166.33769
    下载: 导出CSV
  • [1]

    Debye P, Hückel E 1923 Z. Phys. 24 185

    [2]

    Shukla P K, Eliasson B 2008 Phys. Lett. A 372 2897Google Scholar

    [3]

    Chen Z B, Hu H W, Ma K, Liu X B, Guo X L, Li S, Zhu B H, Huang L, Wang K 2018 Phys. Plasmas 25 032108Google Scholar

    [4]

    Ray D 2000 Phys. Rev. E 62 4126Google Scholar

    [5]

    Wu Z Q, Han G X, Yan J, Pang J Q 2002 J. Phys. B 35 2305Google Scholar

    [6]

    Das M 2014 Phys. Plasmas 21 012709Google Scholar

    [7]

    Li Y Q, Wu J H, Hou Y, Yuan J M 2008 J. Phys. B 41 145002Google Scholar

    [8]

    Saha B, Fritzsche S 2007 J. Phys. B 40 259Google Scholar

    [9]

    Belkhiri M, Fontes C J, Poirier M 2015 Phys. Rev. A 92 032501Google Scholar

    [10]

    Fernley J A, Taylor K T, Seaton M J 1987 J. Phys. B 20 6457Google Scholar

    [11]

    Peach G, Saraph H E, Seaton M J 1988 J. Phys. B 21 3669Google Scholar

    [12]

    Fernley J A, Taylor K T, Seaton M J 1987 J. Phys. B 20 6457Google Scholar

    [13]

    Kaspi S, Brandt W N, Netzer H, Sambruna R, Chartas G, Garmire G P, Nousek J A 2000 Astrophys. J. Lett. 535 L17Google Scholar

    [14]

    Saha B, Bhattacharyya S, Mukherjee T K, Mukherjee P K 2003 Int. J. Quantum Chem. 92 413Google Scholar

    [15]

    Costa A M, Martins M C, Parente F, Santos J P, Indelicato P 2001 Atom. Data Nucl. Dat. 79 223Google Scholar

    [16]

    Goryaev F F, Vainshtein L A, Urnov A M 2017 Atom. Data Nucl. Dat. 113 117Google Scholar

    [17]

    Saha J K, Bhattacharyya S, Mukherjee T K, Mukherjee P K 2010 J. Quant. Spectrosc. Radiat. Transfer 111 675Google Scholar

    [18]

    Fang T K, Wu C S, Gao X, Chang T N 2017 Phys. Rev. A 96 052502Google Scholar

    [19]

    Kar S, Ho Y K 2005 Chem. Phys. Lett. 402 544Google Scholar

    [20]

    Xie L Y, Wang J G, Janev R K, Qu Y Z, Dong C Z 2012 Eur. Phys. J. D 66 125Google Scholar

    [21]

    Chen Z B 2017 Phys. Plasmas 24 122119Google Scholar

    [22]

    Chen Z B, Ma K, Hu H W, Wang K 2018 Phys. Plasmas 25 072120Google Scholar

    [23]

    Chaudhuri S K, Mukherjee P K, Fricke B 2017 Eur. Phys. J. D 71 71Google Scholar

    [24]

    Hu H W, Chen Z B, Chen W C 2016 Radiat. Eff. Defect. S. 171 890Google Scholar

    [25]

    Ray D, Mukherjee P K 1998 J. Phys. B 31 3479Google Scholar

    [26]

    Ray D, Mukherjee P K 1998 Eur. Phys. J. D 2 89Google Scholar

  • [1] 杨温渊, 董烨, 孙会芳, 杨郁林, 董志伟. 超宽带等离子体相对论微波噪声放大器的物理分析和数值模拟. 物理学报, 2023, 72(5): 058401. doi: 10.7498/aps.72.20222061
    [2] 何新, 江涛, 高城, 张振福, 杨俊波. 一种计算非平衡等离子体中粒子能级布居的简化方法. 物理学报, 2021, 70(14): 145202. doi: 10.7498/aps.70.20202119
    [3] 李曜均, 岳东宁, 邓彦卿, 赵旭, 魏文青, 葛绪雷, 远晓辉, 刘峰, 陈黎明. 相对论强激光与近临界密度等离子体相互作用的质子成像. 物理学报, 2019, 68(15): 155201. doi: 10.7498/aps.68.20190610
    [4] 牟致栋. Rh XIII—Cd XVI离子4s24p3—4s4p4能级与跃迁的理论计算. 物理学报, 2019, 68(6): 063101. doi: 10.7498/aps.68.20181976
    [5] 王杰敏, 王希娟, 陶亚萍. 75As32S+和75As34S+离子的光谱常数与分子常数. 物理学报, 2015, 64(24): 243101. doi: 10.7498/aps.64.243101
    [6] 王宇, 陈再高, 雷奕安. 等离子体填充0.14 THz相对论返波管模拟. 物理学报, 2013, 62(12): 125204. doi: 10.7498/aps.62.125204
    [7] 胡峰, 杨家敏, 王传珂, 张继彦, 蒋刚, 朱正和. 电子关联效应对金离子的影响. 物理学报, 2011, 60(10): 103104. doi: 10.7498/aps.60.103104.1
    [8] 李德俊, 米贤武, 邓科. 一维铁磁链中量子孤波的能级和磁矩. 物理学报, 2010, 59(10): 7344-7349. doi: 10.7498/aps.59.7344
    [9] 孙言, 苟秉聪, 朱婧晶. Li“洞原子”高位三激发态2 S(m)和2 D(m) (m=2—7)的能级、精细结构和Auger宽度. 物理学报, 2010, 59(6): 3878-3884. doi: 10.7498/aps.59.3878
    [10] 田杨萌, 王彩霞, 姜 明, 程新路, 杨向东. 惰性物质等离子体物态方程研究. 物理学报, 2007, 56(10): 5698-5703. doi: 10.7498/aps.56.5698
    [11] 王 斌, 唐昌建, 刘濮鲲. 离子通道中相对论电子注的切连科夫辐射. 物理学报, 2006, 55(11): 5953-5958. doi: 10.7498/aps.55.5953
    [12] 刘少斌, 朱传喜, 袁乃昌. 等离子体光子晶体的FDTD分析. 物理学报, 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
    [13] 吴国华, 郭 弘, 刘明伟, 邓冬梅, 刘时雄. 尾波场与相对论效应对激光脉冲自相位调制及频移影响的比较研究. 物理学报, 2005, 54(7): 3213-3220. doi: 10.7498/aps.54.3213
    [14] 曾雄辉, 赵广军, 张连翰, 何晓明, 杭 寅, 李红军, 徐 军. 铝酸镧单晶体中Ce3+的能级结构和荧光特性. 物理学报, 2005, 54(2): 612-616. doi: 10.7498/aps.54.612
    [15] 侯春风, 郭汝海. 椭圆柱形量子点的能级结构. 物理学报, 2005, 54(5): 1972-1976. doi: 10.7498/aps.54.1972
    [16] 陈 洪, 梅 花, 沈彭年, 姜焕清. 重夸克偶素质量谱的相对论夸克模型研究(已撤稿). 物理学报, 2005, 54(3): 1136-1141. doi: 10.7498/aps.54.1136
    [17] 刘玉孝, 赵振华, 王永强, 陈玉红. 氦原子和类氦离子基态能量的变分计算及相对论修正. 物理学报, 2005, 54(6): 2620-2624. doi: 10.7498/aps.54.2620
    [18] 唐昌建, 宫玉彬, 杨玉芷. 二维相对论运动等离子体的介电率张量. 物理学报, 2004, 53(4): 1145-1149. doi: 10.7498/aps.53.1145
    [19] 朱嘉琦, 王景贺, 孟松鹤, 韩杰才, 张连生. 不同能级加速过滤电弧沉积四面体非晶碳膜的结构和性能. 物理学报, 2004, 53(4): 1150-1156. doi: 10.7498/aps.53.1150
    [20] 毛华平, 王红艳, 唐永建, 朱正和, 郑少涛. 电荷对Cu2n±(n=0,1,2)分子离子的势能函数和能级的影响. 物理学报, 2004, 53(1): 37-41. doi: 10.7498/aps.53.37
计量
  • 文章访问数:  12556
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-27
  • 修回日期:  2018-12-10
  • 上网日期:  2019-01-01
  • 刊出日期:  2019-01-20

/

返回文章
返回