搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种计算非平衡等离子体中粒子能级布居的简化方法

何新 江涛 高城 张振福 杨俊波

引用本文:
Citation:

一种计算非平衡等离子体中粒子能级布居的简化方法

何新, 江涛, 高城, 张振福, 杨俊波

A simplified method of calculating electronic energy level populations in nonequilibrium plasmas

He Xin, Jiang Tao, Gao Cheng, Zhang Zhen-Fu, Yang Jun-Bo
PDF
HTML
导出引用
  • 获得粒子能级布居是研究非平衡等离子体辐射性质的一个重要方面. 对于复杂三维等离子体, 采用细致碰撞辐射模型虽然精确, 但计算耗费大. 本文提出了一种束缚态特征温度法, 能够快速计算得到非平衡等离子体中的粒子能级布居. 对非平衡氖等离子体算例的研究表明, 本文方法是有效的, 在等离子体非平衡程度不太高时与碰撞辐射模型符合较好. 在计算效率上, 本文方法比碰撞辐射模型至少提高了3000倍, 可极大节约计算资源和成本, 在工程计算中有重要实际意义.
    In order to investigate the radiative properties of plasma in non local thermodynamic equilibrium (NLTE), it is of great importance to determine energy level populations, which are often obtained by the so-called collisional-radiative (CR) model. As is well known, the CR model is accurate but computationally costly, and thus it is difficult to be applied to engineering calculations for such as complex three-dimensional plasmas. In this work, a bound-state characteristic temperature (BCT) method is proposed, which can be used to calculate quickly the energy level populations in non-equilibrium plasmas. In this method, we assume that for each kind of ionization stage, the bound-state population is Boltzmannian at a certain characteristic temperature. The assumed characteristic temperature is related to the degree of none-equilibrium and may be different from the electronic temperature of the plasma. Based on a modified Saha equation, the assumed characteristic temperature can be calculated easily, and then the energy level populations are obtained conveniently. Five cases of non-equilibrium neon plasma at variable electronic temperatures and densities are investigated and compared with the results from a CR model. Good agreement is found between them if the degree of non-equilibrium is not very large. It shows that the present method is effective and at least 3000 times faster in computation time than the CR model. The method is very useful in engineering applications.
      通信作者: 高城, gaocheng@nudt.edu.cn
    • 基金项目: 国家数值风洞工程(批准号: NNW2019ZT3-B07)和国家自然科学基金(批准号: 12074430)资助的课题
      Corresponding author: Gao Cheng, gaocheng@nudt.edu.cn
    • Funds: Project supported by the National Numerical Windtunnel of China (Grant No. NNW2019ZT3-B07) and the National Natural Science Foundation of China (Grant No. 12074430)
    [1]

    Rogers F J, Iglesias C A 1994 Science 263 50Google Scholar

    [2]

    高城 2011 博士学位论文 (长沙: 国防科技大学)

    Gao C 2011 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [3]

    Cowan R D 1981 The Theory of Atomic Structure and Spectra (Berkeley and Los Angeles: University of California Press) p2

    [4]

    吴泽清 2000 博士学位论文(北京: 中国工程物理研究院)

    Wu Z 2000 Ph. D. Dissertation (Beijing: China Academy of Engineering Physics) (in Chinese)

    [5]

    Surzhikov S T 2012 J. Heat Transfer 134 031002

    [6]

    Itoh M, Yabe T, Kiyokawa S 1987 Phys. Rev. A 35 233Google Scholar

    [7]

    Bel'Kov S A, Gasparian P D, Dolgolyova G V 1997 J. Quant. Spectrosc. Radiat. Transfer 58 471Google Scholar

    [8]

    Novikov V G, Zakharov S V 2003 J. Quant. Spectrosc. Radiat. Transfer 81 339Google Scholar

    [9]

    王民盛, 刘凌涛, 韩小英, 李家明 2006 物理学报 55 2371Google Scholar

    Wang M S, Liu L T, Han X Y, Li J M 2006 Acta Phys. Sin. 55 2371Google Scholar

    [10]

    Peyrusse O, Bauche-Arnoult C, Bauche J 2005 J. Phys. B: At. Mol. Opt. Phys. 38 L137Google Scholar

    [11]

    Bar-Shalom A, Oreg J, Klapisch M 2000 J. Quant. Spectrosc. Radiat. Transfer 65 43Google Scholar

    [12]

    Peyrusse O 2001 J. Quant. Spectrosc. Radiat. Transfer 71 571Google Scholar

    [13]

    Bauche J, Bauche-Arnoult C, Peyrusse O, Bachelier A, Gauthier J C 2003 J. Quant. Spectrosc. Radiat. Transfer 81 47Google Scholar

    [14]

    Peyrusse O 2000 J. Phys. B: At. Mol. Opt. Phys. 33 4303Google Scholar

    [15]

    Hauschildt P H 1993 J. Quant. Spectrosc. Radiat. Transfer 50 301Google Scholar

    [16]

    Duston D, Clark R W, Davis J, Apruzese J P 1983 Phys. Rev. A 27 1441Google Scholar

    [17]

    Lee R W, Whiten B L, Stout R E 1984 J. Quant. Spectrosc. Radiat. Transfer 32 91Google Scholar

    [18]

    唐京武, 黄笃之, 易有根 2010 物理学报 59 7769Google Scholar

    Tang J W, Hang D Z, Yi Y G 2010 Acta Phys. Sin. 59 7769Google Scholar

    [19]

    Lee Y T 1987 J. Quant. Spectrosc. Radiat. Transfer 38 131Google Scholar

    [20]

    Abdallah Jr J, Sherrill M E 2008 High Energy Density Phys. 4 124Google Scholar

    [21]

    Fontes C J, Abdallah Jr J, Clark R E H, Kilcrease D P 2000 J. Quant. Spectrosc. Radiat. Transfer 65 223Google Scholar

    [22]

    Gao C, Zeng J, Li Y, Jin F, Yuan J 2013 High Energy Density Phys. 9 583Google Scholar

    [23]

    Fontes C J, Zhang H L, Abdallah Jr J, Clark R E H, Kilcrease D P, Colgan J, Cunningham R T, Hakel P, Magee N H, Sherrill M E 2015 J. Phys. B: At. Mol. Opt. Phys. 48 144014Google Scholar

    [24]

    Ralchenko Y 2016 Modern Methods in Collisional-Radiative Modeling of Plasmas (Berlin: Springer International Publishing) p127

    [25]

    Piron R, Gilleron F, Aglitskiy Y, Chung H-K, Fontes C J, Hansen S B, Marchuk O, Scott H A, Stambulchik E, Ralchenko Y 2017 High Energy Density Phys. 23 38Google Scholar

    [26]

    Hansen S B, Chung H K, Fontes C J, Ralchenko Y, Scott H A, Stambulchik E 2020 High Energy Density Phys. 35 100693Google Scholar

    [27]

    Hansen S B, Bauche J, Bauche-Arnoult C, Gu M F 2007 High Energy Density Phys. 3 109Google Scholar

    [28]

    Pang J Q, Wu Z Q, Yan J 2007 Commun. Comput. Phys. 2 1085

    [29]

    Bauche J, Bauche-Arnoult C, Fournier K B 2004 Phys. Rev. E 69 026403Google Scholar

    [30]

    Park C 1990 Nonequilibrium Hypersonic Aerothermodynamics (New York: Wiley Press) p5

  • 图 1  ${A^{z + }}$的束缚态及连续态

    Fig. 1.  Bound and continuum states of ${A^{z + }}$.

    图 2  计算流程图

    Fig. 2.  Calculation flowchart.

    图 3  算例1的非简并能级布居

    Fig. 3.  Non-degenerate electronic level populations for Case 1.

    图 4  算例2的非简并能级布居

    Fig. 4.  Non-degenerate electronic level populations for Case 2.

    图 5  算例3的非简并能级布居

    Fig. 5.  Non-degenerate electronic level populations for Case 3.

    图 6  算例4的非简并能级布居

    Fig. 6.  Non-degenerate electronic level populations for Case 4.

    图 7  算例5的非简并能级布居

    Fig. 7.  Non-degenerate electronic level populations for Case 5.

    表 1  算例参数

    Table 1.  Cell parameters.

    算例1算例2算例3算例4算例5
    $k{T_{\rm{e}}}$/eV515401540
    Ne核总数密度/${\rm{c}}{{\rm{m}}^{ - 3}}$10181018101810201020
    ${\rm{Ne}}$粒子数含量/%0.0258
    ${\rm{N}}{{\rm{e}}^ + }$粒子数含量/%5.2017
    ${\rm{N}}{{\rm{e}}^{2 + }}$粒子数含量/%88.68530.00155.0406
    ${\rm{N}}{{\rm{e}}^{3 + }}$粒子数含量/%6.08630.420238.97130.0002
    ${\rm{N}}{{\rm{e}}^{4 + }}$粒子数含量/%0.000819.461848.92050.0299
    ${\rm{N}}{{\rm{e}}^{5 + }}$粒子数含量/%67.88830.00376.98991.0996
    ${\rm{N}}{{\rm{e}}^{6 + }}$粒子数含量/%12.14070.67670.077715.7779
    ${\rm{N}}{{\rm{e}}^{7 + }}$粒子数含量/%0.087420.126148.7610
    ${\rm{N}}{{\rm{e}}^{8 + }}$粒子数含量/%79.193534.3313
    ${\rm{N}}{{\rm{e}}^{9 + }}$粒子数含量/%
    ${\rm{N}}{{\rm{e}}^{10 + }}$粒子数含量/%
    e数含量/(1018 cm–3)2.014.927.79351.00712.00
    下载: 导出CSV

    表 2  Ne原子及离子电离能

    Table 2.  Ionization energy of neon atom and ions.

    原子(离子)电离能/eV
    ${\rm{Ne}}$19.441
    ${\rm{N}}{{\rm{e}}^ + }$40.565
    ${\rm{N}}{{\rm{e}}^{2 + }}$63.007
    ${\rm{N}}{{\rm{e}}^{3 + }}$93.588
    ${\rm{N} }{ {\rm{e} }^{4 + } }$123.924
    ${\rm{N}}{{\rm{e}}^{5 + }}$157.561
    ${\rm{N}}{{\rm{e}}^{6 + }}$201.788
    ${\rm{N}}{{\rm{e}}^{7 + }}$230.156
    ${\rm{N}}{{\rm{e}}^{8 + }}$1183.642
    ${\rm{N}}{{\rm{e}}^{9 + }}$1345.217
    下载: 导出CSV

    表 3  计算耗费对比

    Table 3.  A comparison of calculation cost.

    程序语言计算平台CPU总耗时
    CR模型FortranIBM服务器Intel Xeon E5649: 6核2.53 GHz约24 h
    本文方法MatlabThinkpad笔记本电脑Intel Core i5-3320 M: 2核2.60 GHz约28 s
    下载: 导出CSV
  • [1]

    Rogers F J, Iglesias C A 1994 Science 263 50Google Scholar

    [2]

    高城 2011 博士学位论文 (长沙: 国防科技大学)

    Gao C 2011 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [3]

    Cowan R D 1981 The Theory of Atomic Structure and Spectra (Berkeley and Los Angeles: University of California Press) p2

    [4]

    吴泽清 2000 博士学位论文(北京: 中国工程物理研究院)

    Wu Z 2000 Ph. D. Dissertation (Beijing: China Academy of Engineering Physics) (in Chinese)

    [5]

    Surzhikov S T 2012 J. Heat Transfer 134 031002

    [6]

    Itoh M, Yabe T, Kiyokawa S 1987 Phys. Rev. A 35 233Google Scholar

    [7]

    Bel'Kov S A, Gasparian P D, Dolgolyova G V 1997 J. Quant. Spectrosc. Radiat. Transfer 58 471Google Scholar

    [8]

    Novikov V G, Zakharov S V 2003 J. Quant. Spectrosc. Radiat. Transfer 81 339Google Scholar

    [9]

    王民盛, 刘凌涛, 韩小英, 李家明 2006 物理学报 55 2371Google Scholar

    Wang M S, Liu L T, Han X Y, Li J M 2006 Acta Phys. Sin. 55 2371Google Scholar

    [10]

    Peyrusse O, Bauche-Arnoult C, Bauche J 2005 J. Phys. B: At. Mol. Opt. Phys. 38 L137Google Scholar

    [11]

    Bar-Shalom A, Oreg J, Klapisch M 2000 J. Quant. Spectrosc. Radiat. Transfer 65 43Google Scholar

    [12]

    Peyrusse O 2001 J. Quant. Spectrosc. Radiat. Transfer 71 571Google Scholar

    [13]

    Bauche J, Bauche-Arnoult C, Peyrusse O, Bachelier A, Gauthier J C 2003 J. Quant. Spectrosc. Radiat. Transfer 81 47Google Scholar

    [14]

    Peyrusse O 2000 J. Phys. B: At. Mol. Opt. Phys. 33 4303Google Scholar

    [15]

    Hauschildt P H 1993 J. Quant. Spectrosc. Radiat. Transfer 50 301Google Scholar

    [16]

    Duston D, Clark R W, Davis J, Apruzese J P 1983 Phys. Rev. A 27 1441Google Scholar

    [17]

    Lee R W, Whiten B L, Stout R E 1984 J. Quant. Spectrosc. Radiat. Transfer 32 91Google Scholar

    [18]

    唐京武, 黄笃之, 易有根 2010 物理学报 59 7769Google Scholar

    Tang J W, Hang D Z, Yi Y G 2010 Acta Phys. Sin. 59 7769Google Scholar

    [19]

    Lee Y T 1987 J. Quant. Spectrosc. Radiat. Transfer 38 131Google Scholar

    [20]

    Abdallah Jr J, Sherrill M E 2008 High Energy Density Phys. 4 124Google Scholar

    [21]

    Fontes C J, Abdallah Jr J, Clark R E H, Kilcrease D P 2000 J. Quant. Spectrosc. Radiat. Transfer 65 223Google Scholar

    [22]

    Gao C, Zeng J, Li Y, Jin F, Yuan J 2013 High Energy Density Phys. 9 583Google Scholar

    [23]

    Fontes C J, Zhang H L, Abdallah Jr J, Clark R E H, Kilcrease D P, Colgan J, Cunningham R T, Hakel P, Magee N H, Sherrill M E 2015 J. Phys. B: At. Mol. Opt. Phys. 48 144014Google Scholar

    [24]

    Ralchenko Y 2016 Modern Methods in Collisional-Radiative Modeling of Plasmas (Berlin: Springer International Publishing) p127

    [25]

    Piron R, Gilleron F, Aglitskiy Y, Chung H-K, Fontes C J, Hansen S B, Marchuk O, Scott H A, Stambulchik E, Ralchenko Y 2017 High Energy Density Phys. 23 38Google Scholar

    [26]

    Hansen S B, Chung H K, Fontes C J, Ralchenko Y, Scott H A, Stambulchik E 2020 High Energy Density Phys. 35 100693Google Scholar

    [27]

    Hansen S B, Bauche J, Bauche-Arnoult C, Gu M F 2007 High Energy Density Phys. 3 109Google Scholar

    [28]

    Pang J Q, Wu Z Q, Yan J 2007 Commun. Comput. Phys. 2 1085

    [29]

    Bauche J, Bauche-Arnoult C, Fournier K B 2004 Phys. Rev. E 69 026403Google Scholar

    [30]

    Park C 1990 Nonequilibrium Hypersonic Aerothermodynamics (New York: Wiley Press) p5

  • [1] 何新, 江涛, 张振福, 杨俊波. 束缚态特征温度方法及应用. 物理学报, 2022, 71(8): 085201. doi: 10.7498/aps.71.20212115
    [2] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性. 物理学报, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [3] 邹秀, 刘惠平, 张小楠, 邱明辉. 具有非广延分布电子的碰撞等离子体磁鞘的结构. 物理学报, 2021, 70(1): 015201. doi: 10.7498/aps.70.20200794
    [4] 张海宝, 陈强. 非热等离子体材料表面处理及功能化研究进展. 物理学报, 2021, 70(9): 095203. doi: 10.7498/aps.70.20202233
    [5] 马堃, 陈展斌, 黄时中. 等离子体屏蔽效应对Ar16+基态和激发态能级的影响. 物理学报, 2019, 68(2): 023102. doi: 10.7498/aps.68.20181915
    [6] 赵晓云, 张丙开, 王春晓, 唐义甲. 电子的非广延分布对等离子体鞘层中二次电子发射的影响. 物理学报, 2019, 68(18): 185204. doi: 10.7498/aps.68.20190225
    [7] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟. 物理学报, 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [8] 李文秋, 王刚, 苏小保. 非磁化冷等离子体柱中的模式辐射特性分析. 物理学报, 2017, 66(5): 055201. doi: 10.7498/aps.66.055201
    [9] 刘明伟, 龚顺风, 李劲, 姜春蕾, 张禹涛, 周并举. 低密等离子体通道中的非共振激光直接加速. 物理学报, 2015, 64(14): 145201. doi: 10.7498/aps.64.145201
    [10] 曹鹤飞, 刘尚合, 孙永卫, 原青云. 等离子体环境非偏置固体表面带电研究. 物理学报, 2013, 62(11): 119401. doi: 10.7498/aps.62.119401
    [11] 刘惠平, 邹秀, 邹滨雁, 邱明辉. 电负性等离子体磁鞘的玻姆判据. 物理学报, 2012, 61(3): 035201. doi: 10.7498/aps.61.035201
    [12] 周先春, 林万涛, 林一骅, 莫嘉琪. 大气非均匀量子等离子体孤波解. 物理学报, 2012, 61(24): 240202. doi: 10.7498/aps.61.240202
    [13] 郑灵, 赵青, 刘述章, 邢晓俊. 太赫兹波在非磁化等离子体中的传输特性研究. 物理学报, 2012, 61(24): 245202. doi: 10.7498/aps.61.245202
    [14] 章海锋, 刘少斌, 孔祥鲲. TM模式下二维非磁化等离子体光子晶体的禁带调制特性分析. 物理学报, 2011, 60(5): 055209. doi: 10.7498/aps.60.055209
    [15] 章海锋, 刘少斌, 孔祥鲲. 横磁模式下二维非磁化等离子体光子晶体的线缺陷特性研究. 物理学报, 2011, 60(2): 025215. doi: 10.7498/aps.60.025215
    [16] 牟宗信, 牟晓东, 贾莉, 王春, 董闯. 非平衡磁控溅射双势阱静电波动及其共振耦合. 物理学报, 2010, 59(10): 7164-7169. doi: 10.7498/aps.59.7164
    [17] 田杨萌, 王彩霞, 姜 明, 程新路, 杨向东. 惰性物质等离子体物态方程研究. 物理学报, 2007, 56(10): 5698-5703. doi: 10.7498/aps.56.5698
    [18] 刘少斌, 朱传喜, 袁乃昌. 等离子体光子晶体的FDTD分析. 物理学报, 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
    [19] 牟宗信, 李国卿, 秦福文, 黄开玉, 车德良. 非平衡磁控溅射系统离子束流磁镜效应模型. 物理学报, 2005, 54(3): 1378-1384. doi: 10.7498/aps.54.1378
    [20] 牟宗信, 李国卿, 车德良, 黄开玉, 柳 翠. 非平衡磁控溅射沉积系统伏安特性模型研究. 物理学报, 2004, 53(6): 1994-1999. doi: 10.7498/aps.53.1994
计量
  • 文章访问数:  3729
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-14
  • 修回日期:  2021-02-07
  • 上网日期:  2021-07-12
  • 刊出日期:  2021-07-20

/

返回文章
返回