搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非磁化冷等离子体柱中的模式辐射特性分析

李文秋 王刚 苏小保

引用本文:
Citation:

非磁化冷等离子体柱中的模式辐射特性分析

李文秋, 王刚, 苏小保

Analysis of mode radiation characteristics in a non-magnetized cold plasma column

Li Wen-Qiu, Wang Gang, Su Xiao-Bao
PDF
导出引用
  • 利用亥姆霍兹方程和场匹配法,推导出了被圆柱介质管包裹的均匀非磁化冷等离子体柱中各角向模的色散关系.数值计算并分析了角向对称模(m=0模)、非角向对称模(m0模)的色散特性以及在不同波频率下各模式的辐射特性.研究发现,在波频率小于等离子体频率pe条件下,当一定时,各模式的传播速度随着pe的增大逐渐接近光速;m=1角向模式属于端向辐射,其主瓣辐射方向在轴向,而且随着的增大,其主瓣宽度逐渐变小,且出现幅值极小的副瓣;对于m1模式,其主瓣辐射方向均与轴向存在一定夹角,既不属于端向辐射也不属于法向辐射,且随着的增大,其主瓣宽度逐渐变小;各个模式的传播功率随着的增大逐渐增大.
    The electromagnetic surface waves which propagate along a non-magnetized cold plasma column have a great value in the application of plasma antenna. In this paper, the dispersion properties, the transmission power distributions, and the radiation patterns for these electromagnetic surface waves which have lower frequencies than the electron plasma frequency are analyzed numerically. Based on Helmholtz equation, the specific expression of dispersion equation is derivedby the field matching method, then the exact values of complex axial wave vector kz under different wave frequencies are obtained by solving the transcendental dispersion relation. Using the specific value of kz obtained above, the exact expressions of transmission power profile in the plasma column and field profiles in the three regions, i.e., plasma, dielectric, and free space are derived, respectively. Finally, based on the complex form of electric conductivity that is derived from the Boltzmann-Vlasov equation with Krook term and the complex axial wave vector kz obtained above, the influence of the parameter pea/c on phase property, and the dependence of radiation pattern and transmission power profile on wave frequency of the non-magnetized cold plasma column in a cylindrical dielectric tube system are analyzed. The results show that the electron plasma frequency has a significant influence on the phase property, which is evidently confirmed by the fact that the propagation velocities of the three modes m=0, m=1 and m=2 are all near to the light speed when the value of parameter pea/c gradually increases. Meanwhile, through the investigation of the radiation patterns for the three modes, an important conclusion is that the radiation pattern has evident dependence on wave frequency. While the radiation direction of the main lobe is in the axial direction for the m=1 mode, the m1 modes each have an angle between the radiation direction of the main lobe and the axial direction, this crucial conclusion is in good agreement with the theoretical calculation results obtained from other researcher. Further, we find that with the increase of wave frequency, the angle between the main lobe radiation direction and the axial direction turns smaller for each of m=0 and m=2 modes, and the width of main lobe gradually narrows for each of all modes, and the amplitude of the first side lobe becomes notable for each of m=0 and m=2 modes and ignorable for the m=1 mode. Also, the transmission power increases as the wave frequency increases for each of all modes. These theoretical calculation results provide a detailed theoretical reference for the designing of plasma stealth and high-precision requirements of plasma antenna design, and giving a comprehensive optimization guidance for the modulation of plasma antenna.
      通信作者: 李文秋, beiste@163.com
    • 基金项目: 国家高技术研究发展计划(批准号:2013AA8035040C)资助的课题.
      Corresponding author: Li Wen-Qiu, beiste@163.com
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2013AA8035040C).
    [1]

    Trivelpiece A W, Gould R W 1959J.Appl.Phys. 30 1784

    [2]

    Alexeff I 1968Phys.Fluids 11 1591

    [3]

    Kirichenko Y V, Lonin Y F, Onishchenko I N 2011Radioelectron.Commun.Syst. 54 613

    [4]

    Kirichenko Y V, Lonin Y F, Onishchenko I N 2014Radioelectron.Commun.Syst. 57 474

    [5]

    Kirichenko Y V, Lonin Y F, Onishchenko I N 2014J.Commun.Technol.Electron. 59 269

    [6]

    Ye H Q, Gao M, Tang C J 2011IEEE Trans.Antennas Propag. 59 1497

    [7]

    Wu K B, Hsu J Y 2012Phys.Plasmas 19 022111

    [8]

    Jia G, Xiang N, Wang X, Huang Y, Lin Y 2016Phys.Plasmas 23 012504

    [9]

    Kalaee M J, Katoh Y 2016Phys.Plasmas 23 072119

    [10]

    Chen S Q 2001International Aviation 2001 10

    [11]

    Lin M, Xu H J, Wei X L, Liang H, Zhang Y H 2015Acta Phys.Sin. 64 055201(in Chinese)[林敏, 徐浩军, 魏小龙, 梁华, 张艳华2015物理学报64 055201]

    [12]

    Chen F F 1991Plasma Phys.Controlled Fusion 33 339

    [13]

    Zhao G W, Xu Y M, Chen C 2006Acta Phys.Sin. 55 3458(in Chinese)[赵国伟, 徐跃民, 陈诚2006物理学报55 3458]

    [14]

    Zhao G W, Wang Z J, Xu Y M, Liang Z W, Xu J 2007Acta Phys.Sin. 56 5304(in Chinese)[赵国伟, 王之江, 徐跃民, 梁志伟, 徐杰2007物理学报56 5304]

  • [1]

    Trivelpiece A W, Gould R W 1959J.Appl.Phys. 30 1784

    [2]

    Alexeff I 1968Phys.Fluids 11 1591

    [3]

    Kirichenko Y V, Lonin Y F, Onishchenko I N 2011Radioelectron.Commun.Syst. 54 613

    [4]

    Kirichenko Y V, Lonin Y F, Onishchenko I N 2014Radioelectron.Commun.Syst. 57 474

    [5]

    Kirichenko Y V, Lonin Y F, Onishchenko I N 2014J.Commun.Technol.Electron. 59 269

    [6]

    Ye H Q, Gao M, Tang C J 2011IEEE Trans.Antennas Propag. 59 1497

    [7]

    Wu K B, Hsu J Y 2012Phys.Plasmas 19 022111

    [8]

    Jia G, Xiang N, Wang X, Huang Y, Lin Y 2016Phys.Plasmas 23 012504

    [9]

    Kalaee M J, Katoh Y 2016Phys.Plasmas 23 072119

    [10]

    Chen S Q 2001International Aviation 2001 10

    [11]

    Lin M, Xu H J, Wei X L, Liang H, Zhang Y H 2015Acta Phys.Sin. 64 055201(in Chinese)[林敏, 徐浩军, 魏小龙, 梁华, 张艳华2015物理学报64 055201]

    [12]

    Chen F F 1991Plasma Phys.Controlled Fusion 33 339

    [13]

    Zhao G W, Xu Y M, Chen C 2006Acta Phys.Sin. 55 3458(in Chinese)[赵国伟, 徐跃民, 陈诚2006物理学报55 3458]

    [14]

    Zhao G W, Wang Z J, Xu Y M, Liang Z W, Xu J 2007Acta Phys.Sin. 56 5304(in Chinese)[赵国伟, 王之江, 徐跃民, 梁志伟, 徐杰2007物理学报56 5304]

  • [1] 杨温渊, 董烨, 孙会芳, 杨郁林, 董志伟. 超宽带等离子体相对论微波噪声放大器的物理分析和数值模拟. 物理学报, 2023, 72(5): 058401. doi: 10.7498/aps.72.20222061
    [2] 李文秋, 唐彦娜, 刘雅琳, 马维聪, 王刚. 各向同性等离子体覆盖金属天线辐射增强现象. 物理学报, 2023, 72(13): 135202. doi: 10.7498/aps.72.20230101
    [3] 赵鑫, 杨晓虎, 张国博, 马燕云, 刘彦鹏, 郁明阳. 高功率激光辐照平面靶后辐射冷却效应对等离子体成丝的影响. 物理学报, 2022, 71(23): 235202. doi: 10.7498/aps.71.20220870
    [4] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展. 物理学报, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [5] 李文秋, 赵斌, 王刚, 相东. 螺旋波等离子体中螺旋波与Trivelpiece-Gould波模式耦合及线性能量沉积特性参量分析. 物理学报, 2020, 69(11): 115201. doi: 10.7498/aps.69.20200062
    [6] 李文秋, 赵斌, 王刚. 电子温度对螺旋波等离子体中电磁模式能量沉积特性的影响. 物理学报, 2020, 69(21): 215201. doi: 10.7498/aps.69.20201018
    [7] 赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生. 放电参数对爆燃模式下同轴枪强流脉冲放电等离子体的影响. 物理学报, 2019, 68(10): 105203. doi: 10.7498/aps.68.20190218
    [8] 章海锋, 刘少斌, 孔祥鲲. TM模式下二维非磁化等离子体光子晶体的禁带调制特性分析. 物理学报, 2011, 60(5): 055209. doi: 10.7498/aps.60.055209
    [9] 章海锋, 刘少斌, 孔祥鲲. 横磁模式下二维非磁化等离子体光子晶体的线缺陷特性研究. 物理学报, 2011, 60(2): 025215. doi: 10.7498/aps.60.025215
    [10] 刘三秋, 国洪梅. 极端相对论快电子分布等离子体中横振荡色散关系. 物理学报, 2011, 60(5): 055203. doi: 10.7498/aps.60.055203
    [11] 刘炳灿, 逯志欣, 于丽. 金属和Kerr非线性介质界面上表面等离子体激元的色散关系. 物理学报, 2010, 59(2): 1180-1184. doi: 10.7498/aps.59.1180
    [12] 季沛勇, 鲁楠, 祝俊. 量子等离子体中波的色散关系以及朗道阻尼. 物理学报, 2009, 58(11): 7473-7478. doi: 10.7498/aps.58.7473
    [13] 赵建明, 张临杰, 李昌勇, 贾锁堂. 里德伯原子向超冷等离子体的自发转化. 物理学报, 2008, 57(5): 2895-2898. doi: 10.7498/aps.57.2895
    [14] 王 彬, 谢文楷. 等离子体加载耦合腔慢波结构色散分析. 物理学报, 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [15] 赵国伟, 徐跃民, 陈 诚. 等离子体天线色散关系和辐射场数值计算. 物理学报, 2007, 56(9): 5298-5303. doi: 10.7498/aps.56.5298
    [16] 谢鸿全, 刘濮鲲. 等离子体填充带状螺旋线的色散方程. 物理学报, 2006, 55(7): 3514-3518. doi: 10.7498/aps.55.3514
    [17] 张 丽, 李向东, 蒋新革. 等离子体效应对类氦氖Kα线系电偶极辐射的影响. 物理学报, 2006, 55(9): 4501-4505. doi: 10.7498/aps.55.4501
    [18] 谢鸿全, 刘濮鲲. 磁化等离子体填充螺旋线的色散方程. 物理学报, 2006, 55(5): 2397-2402. doi: 10.7498/aps.55.2397
    [19] 赵国伟, 徐跃民, 陈 诚. 柱形等离子体辐射场和阻抗的数值计算. 物理学报, 2006, 55(7): 3458-3463. doi: 10.7498/aps.55.3458
    [20] 谢鸿全, 刘濮鲲, 李承跃, 鄢 扬, 刘盛纲. 等离子体填充波纹波导中低频模式特性分析. 物理学报, 2004, 53(9): 3114-3118. doi: 10.7498/aps.53.3114
计量
  • 文章访问数:  5885
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-08
  • 修回日期:  2016-12-06
  • 刊出日期:  2017-03-05

/

返回文章
返回