搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Z=6-51间类锂离子等电子序列激发能及辐射跃迁速率研究

赵嘉勋 武晨晟 宋庆和

引用本文:
Citation:

Z=6-51间类锂离子等电子序列激发能及辐射跃迁速率研究

赵嘉勋, 武晨晟, 宋庆和

Energy levels and radiative rates for transitions in Li-like ions with Z=6-51

ZHAO Jiaxun, WU Chensheng, SONG Qinghe
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文基于多组态Dirac-Fock方法(Multi-Confituration Dirac-Fock,MCDF)和组态相互作用方法(Configuration Interaction,CI)系统计算了类锂等电子序列Z=6-51间C3+、F6+、Mg9+、P12+、Ar15+、Sc18+、Cr21+、Co24+、Zn27+、As30+、Kr33+、Y36+、Mo39+、Rh42+、Cd45+、Sn37+、Sb38+17种离子1s2nl (n≤4,l≤3)共15个能级激发能以及能级间的所有电偶极(E1)、磁偶极(M1)和电四极(E2)跃迁速率。将所得计算结果与NIST数据库及先前的一些理论结果进行对比,当前的绝大部分激发能计算结果与NIST数据的差异在0.02%以内,且显著优于先前同样采用MCDF+CI方法得到的理论结果。而大部分跃迁速率计算结果与NIST数据的差异亦在5%以内,部分与NIST数据差异较大的激发能以及跃迁速率数据,当前的结果能够很好与先前同样采用MCDF+CI方法得到的理论结果相符,这一结果提示未来需对这些跃迁进行更加深入的理论和实验研究。本研究可为未来天体和实验室等离子体的实验诊断和理论模拟提供了精确的数据支撑。
    本文数据集可在科学数据银行数据库:https://www.doi.org/10.57760/sciencedb.j00213.00154中访问获取(审稿阶段请通过私有访问链接查看本文数据集,数据集私有访问链接:https://www.scidb.cn/s/UrqUBv)。
    Li-like ions are widely exist in astrophysical and laboratory plasmas, and their precise atomic parameters (e.g., excitation energies, transition rates) are critical for plasma diagnostics and spectral analysis. In this work, we employ the GRASP2018 package, a widely used program in atomic structure calculations, to systematically compute the energy levels of the lowest 15 levels and the electric dipole (E1), magnetic dipole (M1), and electric quadrupole (E2) transition rates between them for 17 Li-like ions across the isoelectronic sequence (Z=6-51:C3+, F6+, Mg9+, P12+, Ar15+, Sc18+, Cr21+, Co24+, Zn27+, As30+, Kr33+, Y36+, Mo39+, Rh42+, Cd45+, Sn37+, Sb38+). The calculations are based on the multi-configuration Dirac-Fock (MCDF) and configuration interaction (CI) method, incorporating high-order relativistic corrections and QED effects such as Breit interaction, self-energy correction and vacuum polarization. With the computational convergence is achieved, the calculated excitation energies and transition rates are compared with the NIST database and previous theoretical results. Owing to rational basis set construction and larger scale of basis set, the current computational results demonstrate evident improvement over those previously obtained using the same MCDF+CI method. Particularly for the two lowest excited states,[1s22p]1/2, 3/2, which exhibit slower convergence, the relative difference between current results and the NIST data is reduced by one to two orders of magnitude compared to earlier MCDF+CI calculations. This accuracy even approaches that achieved by S-matrix methods specifically optimized for the ground state and these two lowest excited states. For transition rates, except for certain weak transitions with rates below 103s-1, the difference between our calculations and previous theoretical results obtained with the MCDF+CI method is consistently within 1%. Furthermore, our calculations agree with the NIST data within 5% for the majority of transitions. Comparison with NIST and other prior theoretical results reveals evident discrepancies between our calculations and the NIST values for a small part of excitation energies and transition rates. Nevertheless, our results are consistent with other theoretical results for these specific values, suggesting that these particular energy levels and transitions need more detailed theoretical and experimental investigation. This work provides highly accurate data to support experimental diagnostics and theoretical modeling of astrophysical and laboratory plasmas in future research.
    Data Availability:The dataset is publicly available via the Science Data Bank repository:https://www.doi.org/10.57760/sciencedb.j00213.00154(During the review phase, the dataset can be accessed via a private link:https://www.scidb.cn/s/UrqUBv).
  • [1]

    Hu Z M, Xiong G, He Z C, Yang Z H, Numadate N, Huang C W, Yang J M, Yao K, Wei B R, Zou Y M, Wu C S, Ma Y L, Wu Y, Gao X, Nakamura N 2022 Phys. Rev. A 105 L030801

    [2]

    Wu C S, Xie L Y, Hu Z M, Gao X 2020 Journal of Quantitative Spectroscopy and Radiative Transfer 246 106912

    [3]

    Johnson W R, Blundell S A, Sapirstein J 1988 Phys. Rev. A 37 2764

    [4]

    Doschek G A, Feldman U 2010 J. Phys. B: At. Mol. Opt. Phys. 43 232001

    [5]

    Fujioka S, Takabe H, Yamamoto N, Salzmann D, Wang F, Nishimura H, Li Y, Dong Q, Wang S, Zhang Y, Rhee Y, Lee Y, Han J, Tanabe M, Fujiwara T, Nakabayashi Y, Zhao G, Zhang J, Mima K 2009 Nat. Phys. 5 821

    [6]

    Del Zanna G, Mason H E 2018 Living Rev. Sol. Phys. 15 5

    [7]

    Griem H R 1986 Principles of Plasma Spectroscopy (Dordrecht:Springer Netherlands) 885--910

    [8]

    Foot C J 2005 Atomic physics (New York:Oxford university press)

    [9]

    Aggarwal K M, Keenan F P, Heeter R F 2010 Phys. Scripta 81 015303

    [10]

    Aggarwal K M, Keenan F P 2012 Atom. Data Nucl. Data 98 1003

    [11]

    Aggarwal K M, Keenan F P 2013 Atom. Data Nucl. Data 99 156

    [12]

    Khatri I, Goyal A, Aggarwal S, Singh A K, Mohan M 2016 Radiat. Phys. Chem. 123 46

    [13]

    Liu S Z, Xie L Y, Ding X B, Dong C Z 2012 Acta Physica Sinica 61 093106 (in Chinese) [刘尚宗,颉录有,丁晓彬,董晨钟 2012 物理学报 61 093106]

    [14]

    Hu M H, Liu B W, Xu E H, Ma Y L, Wu Y 2020 Journal of Atomic and Molecular Physics 37 819 (in Chinese) [胡木宏,刘博文,徐恩慧,马玉龙,吴勇 2020 原子与分子物理学报 37 819]

    [15]

    Gu M F 2005 Atom. Data Nucl. Data 89 267

    [16]

    Sapirstein J, Cheng K T 2011 Phys. Rev. A 83 012504

    [17]

    Yerokhin V A, Surzhykov A, Müller A 2017 Phys. Rev. A 96 042505

    [18]

    Ge Z M, Wang Z W, Zhou Y J, He L M, Liu G G 2003 Chinese Phys. 12 488

    [19]

    Wang Z W, Zhu X W, Chung K T 1992 J. Phys. B: At. Mol. Opt. Phys. 25 3915

    [20]

    Hu M H, Wang Z W, Zeng F, Wang T, Wang J 2011 Chinese Phys. B 20 083101

    [21]

    Wang Z W, Zhu X W, Chung K T 1992 Phys. Rev. A 46 6914

    [22]

    Wang Z W, Zhu X W, Chung K T 1993 Phys. Scripta 47 65

    [23]

    Wang L M, Liu T T, Yang W Q, Yan Z C 2023 Chinese Phys. B 32 033102

    [24]

    Cai J, Yu W W, Zhang N 2014 Chinese Phys. Lett. 31 093101

    [25]

    Nahar S N 2002 Astronomy and Astrophysics 389 716

    [26]

    NIST Atomic Spectra Database (ver. 5.12), Kramida A, Ralchenko Y, Reader J, NIST ASD Team (2024) https://physics.nist.gov/asd [2025-4-11]

    [27]

    Dyall K G, Grant I P, Johnson C T, Parpia F A, Plummer E P 1989 Comput. Phys. Commun. 55 425

    [28]

    Froese Fischer C, Gaigalas G, Jönsson P, Bieroń J 2019 Comput. Phys. Commun. 237 184

    [29]

    Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (New York:Springer-Verlag)

    [30]

    Liu B W 2021 Fully-relativistic study on wave functions of lithium-like isoelectron sequences with Z=31~40 M.S. Dissertation (Da Lian: Liaoning Normal University) (in Chinese) [刘博文 2021 类锂等电子序列(Z=31~40)波函数的全相对论理论研究 硕士学位论文 (大连: 辽宁师范大学)]

    [31]

    Martin G A, Wiese W L 1976 J. Phys. Chem. Ref. Data 5 537

  • [1] 魏向杰, 孙邓, 王黎明, 严宗朝. 类锂离子体系自旋四重态费米接触项的精密计算. 物理学报, doi: 10.7498/aps.71.20220923
    [2] 文大东, 邓永和, 戴雄英, 吴安如, 田泽安. 钽过冷液体等温晶化的原子层面机制. 物理学报, doi: 10.7498/aps.69.20200665
    [3] 刘琪, 管鹏飞. La65X35(X=Ni,Al)非晶合金原子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.67.20180992
    [4] 刘华兵, 袁丽, 李秋梅, 谌晓洪, 杜泉, 金蓉, 陈雪连, 王玲. 6Li32S双原子分子的光谱和辐射跃迁理论研究. 物理学报, doi: 10.7498/aps.65.033101
    [5] 刘尚宗, 颉录有, 丁晓彬, 董晨钟. 相对论效应对类锂离子能级结构及辐射跃迁性质的影响. 物理学报, doi: 10.7498/aps.61.093106
    [6] 卢硕, 张跃, 尚家香. Si2CN4(010)表面特性的第一性原理研究. 物理学报, doi: 10.7498/aps.60.027302
    [7] 郭古青, 杨亮, 张国庆. Zr48Cu45Al7大块金属玻璃的原子结构研究. 物理学报, doi: 10.7498/aps.60.016103
    [8] 李博文, 蒋军, 董晨钟, 王建国, 丁晓彬. 等离子体屏蔽效应对类氢离子能级结构和辐射跃迁性质的影响. 物理学报, doi: 10.7498/aps.58.5274
    [9] 刘福, 周继承, 谭晓超. 3C-SiC(001)-(2×1)表面原子与电子结构研究. 物理学报, doi: 10.7498/aps.58.7821
    [10] 常志文, 王清林, 罗有华. 自旋多重度对钛三聚体原子结构的影响. 物理学报, doi: 10.7498/aps.55.4553
    [11] 李 杰, 董晨钟, 颉录有. 内壳层电子激发(电离)诱发的电子波函数的弛豫及其对辐射跃迁概率的影响. 物理学报, doi: 10.7498/aps.55.655
    [12] 徐彭寿, 李拥华, 潘海斌. β-SiC(001)-(2×1)表面结构的第一性原理研究. 物理学报, doi: 10.7498/aps.54.5824
    [13] 李拥华, 徐彭寿, 潘海滨, 徐法强, 谢长坤. GaN(1010)表面结构的第一性原理计算. 物理学报, doi: 10.7498/aps.54.317
    [14] 姜旻昊, 孟续军. 用Hartree-Fock-Slater-Boltzmann-Saha模型研究等离子体细致组态原子结构及其状态方程. 物理学报, doi: 10.7498/aps.54.587
    [15] 丁晓彬, 董晨钟. 超重元素Bh(Z=107)的激发态结构和共振吸收率的理论预言. 物理学报, doi: 10.7498/aps.53.3326
    [16] 颉录有, 董晨钟, 马新文, 袁萍, 颜君, 曲一至. 类Ne等电子系列离子(Z=11,…,18)2p~53s—2p~6辐射跃迁的多组态相对论理论计算. 物理学报, doi: 10.7498/aps.51.1965
    [17] 孟续军, 宗晓萍, 白 云, 孙永盛, 张景琳. 混合物质原子结构的自洽场计算. 物理学报, doi: 10.7498/aps.49.2133
    [18] 韩利红, 苟秉聪, 王 菲. 类锂等电子系列高位三激发态2p2np4So能量和到1s2pmp4P态的辐射跃迁. 物理学报, doi: 10.7498/aps.49.2139
    [19] 王建国, 仝晓民, 李家明. 铷原子初通道─末通道辐射跃迁矩阵元研究. 物理学报, doi: 10.7498/aps.45.13
    [20] 承焕生, 崔志祥, 徐洪杰, 要小未, 杨福家. Al(100)表面原子结构的高能离子散射研究. 物理学报, doi: 10.7498/aps.38.1981
计量
  • 文章访问数:  12
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-17

/

返回文章
返回