搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钽过冷液体等温晶化的原子层面机制

文大东 邓永和 戴雄英 吴安如 田泽安

引用本文:
Citation:

钽过冷液体等温晶化的原子层面机制

文大东, 邓永和, 戴雄英, 吴安如, 田泽安

Atomic-level mechanism for isothermal crystallization in supercooled liquid tantalum

Wen Da-Dong, Deng Yong-He, Dai Xiong-Ying, Wu An-Ru, Tian Ze-An
PDF
HTML
导出引用
  • 采用分子动力学模拟研究了钽(Ta)过冷液体的等温晶化过程, 并用双体分布函数g(r)和最大标准团簇等方法表征和分析了体系的微结构演化特性. 结果表明, Ta过冷液体的晶化过程敏感地依赖于过冷度, 临界晶核形成孕育时间随过冷度的增加而减小. 1800 K ≤ T ≤ 1850 K, Ta过冷液体的晶化遵循Ostwald的分步规则: 过冷液体中首先形成大量由Z12和Z14团簇铰链的中程序(即Z-MRO); 随后Z-MRO长大并有序化为A15晶体相; 最后体心立方(BCC)晶核在A15相内部快速长大成BCC晶体. 而在1900 K ≤ T ≤ 1950 K, 过冷液体直接向A15相转变. A15相由最大尺寸的Z-MRO不断兼并周围小尺寸的Z-MRO并有序化形成.
    The morphology and physical properties of crystal as well as the glass-forming ability (GFA) of metals are closely related to the evolution pathway of atomic structures in the early stage of nucleation in supercooled liquids. Therefore, the study of the evolution of atomic structures in the isothermal crystallization process of supercooled liquids, is of great significance not only for predicting and accurately controlling the crystal nucleation and growth, but also for understanding the local atomic structural origin of the GFA. In the present work, the atomic-level mechanism for isothermal crystallization in the supercooled liquid tantalum is studied by molecular dynamics (MD) simulation. The microstructural evolution of metal Ta system is characterized and analyzed by using the potential energy per atom (PE), the pair distribution function (PDF) g(r), and the largest standard cluster (LSC). Two crystallization paths of Ta supercooled liquid can be observed during isothermal relaxations. For each pathway the incubation time of the formation critical nucleus increases with annealing temperature (T) rising. At 1800 K ≤ T ≤ 1850 K, the crystallization of supercooled liquid Ta conforms to the Ostwald's step rule: first, Z12 (i.e. icosahedron) and Z14 (Kasper cluster with 14 coordination number) clusters in supercooled liquids are hinged into medium-range order (i.e., Z-MRO); then the Z-MRO are merged and ordered into A15 crystal phase; finally, BCC crystal nucleus inside of the A15 phase grows rapidly into BCC single crystal at the cost of the atoms in A15 phase. While at 1900 K ≤ T ≤ 1950 K, Ta supercooled liquid is directly transformed into A15 phase. The A15 crystal phase is mainly formed by the continuous merging of the largest Z-MRO with the small Z-MRO, which is similar to the picture of the classical nucleation theory (CNT). However, whether the phase transition from A15 to BCC will occur above 1900 K remains to be further confirmed by a longer-time MD simulation. Relative to the supercooled liquids of monoatomic metals with lower melting point, the good GFA of Ta may originate from the slowly growing A15 crystal nucleus in its supercooled liquid.
      通信作者: 文大东, ddwen@hnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51871096, 11572124)、湖南省自然科学基金(批准号: 2018JJ3100, 2018JJ4044)和湖南省教育厅青年项目(批准号: 19B122)资助的课题
      Corresponding author: Wen Da-Dong, ddwen@hnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51871096, 11572124), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2018JJ3100, 2018JJ4044), and the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 19B122)
    [1]

    王锦程, 郭灿, 张琪, 唐赛, 李俊杰, 王志军 2018 金属学报 54 204Google Scholar

    Wang J C, Guo C, Zhang Q, Tang S, Li J J, Wang Z J 2018 Acta Metall. Sin. 54 204Google Scholar

    [2]

    刘丽霞, 侯兆阳, 刘让苏 2012 物理学报 61 056101Google Scholar

    Liu L X, Hou Z Y, Liu R S 2012 Acta Phys. Sin. 61 056101Google Scholar

    [3]

    Shibuta Y, Sakane S, Takaki T, Ohno M 2016 Acta Mater. 105 328Google Scholar

    [4]

    Sun Y, Song H J, Zhang F, Yang L, Ye Z, Mendelev M I, Wang C Z, Ho K M 2018 Phys. Rev. Lett. 120 085703Google Scholar

    [5]

    Okita S, Verestek W, Sakane S, Takaki T, Ohno M, Shibuta Y 2017 J. Cryst. Growth 474 140Google Scholar

    [6]

    Herlach D M, Kobold R, Klein S 2018 JOM 70 726Google Scholar

    [7]

    Sosso G C, Chen J, Cox S J, Fitzner M, Pedevilla P, Zen A, Michaelides A 2016 Chem. Rev. 116 7078Google Scholar

    [8]

    Leines G D, Drautz R, Rogal J 2017 J. Chem. Phys. 146 154702Google Scholar

    [9]

    Turnbull D 1969 Contemp. Phys. 10 473Google Scholar

    [10]

    Wen D D, Deng Y H, Dai X Y, Tian Z A, Peng P 2019 Philos. Mag. 99 2904Google Scholar

    [11]

    Chung S Y, Kim Y M, Kim J G, Kim Y J 2009 Nat. Phys. 5 68Google Scholar

    [12]

    Zhong L, Wang J W, Sheng H W, Zhang Z, Mao S X 2014 Nature 512 177Google Scholar

    [13]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [14]

    https://sites.google.com/site/eam potentials/Ta [2020-5-4]

    [15]

    Wu Z W, Li M Z, Wang W H, Song W J, Liu K X 2013 J. Chem. Phys. 138 074502Google Scholar

    [16]

    Wu Z, Mo Y, Lang L, Yu A, Xie Q, Liu R, Tian Z 2018 Phys.Chem.Chem.Phys. 20 28088Google Scholar

    [17]

    Zhang J C, Chen C, Pei Q X, Wan Q, Zhang W X, Sha Z D 2015 Mater. Des. 77 1Google Scholar

    [18]

    Tian Z A, Liu R S, Dong K J, Yu A B 2011 Europhys. Lett. 96 36001Google Scholar

    [19]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379Google Scholar

    [20]

    Wen D D, Deng Y H, Liu J, Tian Z A, Peng P 2017 Comput. Mater. Sci. 140 275Google Scholar

    [21]

    Gabriele C S, Ji C, Stephen J C, Martin F, Philipp P, Andrea Z, Angelos M 2016 Chemical Review 116 7078

    [22]

    文大东, 彭平, 蒋元祺, 田泽安, 刘让苏 2013 物理学报 62 196101Google Scholar

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S 2013 Acta Phys. Sin. 62 196101Google Scholar

    [23]

    Cortella L, Vinet B 1993 Phys. Rev. Lett. 70 1469Google Scholar

    [24]

    Wolde ten P R, Montero M J R, Frenke D 1995 Phys. Rev. Lett. 75 2714Google Scholar

    [25]

    John A M, James F B, Robert E R, Per S, Frederick H S, Lin H Y 2002 J. Phys. Condens. Matter 14 2825Google Scholar

    [26]

    Jakse N, Bacq O L, Pasturel A 2004 Phys. Rev. B 70 174203Google Scholar

    [27]

    Schenk T, Moritz D H, Simonet V, Bellissent R, Herlach D M 2002 Phys. Rev. Lett. 89 075507Google Scholar

    [28]

    Zhang Q, Wang J C, Tang S, Wang Y J, Li J J, Zhou W Q, Wang Z J 2019 Phys. Chem. Chem. Phys. 21 4122Google Scholar

    [29]

    Wu Z Z, Mo Y F, Lang L, Yu A B, Xie Q, Liu R S, Tian Z A 2018 Phys. Chem. Chem. Phys. 20 28088

  • 图 1  不同温度下Ta过冷液体平均原子势能PE随退火时间t的变化

    Fig. 1.  The evolution of potential energy per atom (PE) of Ta supercooled liquid with relaxation time t at different temperatures.

    图 2  金属Ta体系的双体分布函数g(r)和结构因子S(q) (a) 300 K时体系的g(r) 曲线; (b) 300 K时模拟体系的结构因子S(q); (c)不同温度下体系晶化前后的g(r)曲线

    Fig. 2.  The g(r) and S(q) curves of metal Ta system at several selected temperatures: (a) Comparison of g(r) for Ta metallic glass at 300 K between present MD simulation and ab initio MD results; (b) comparison of S(q) for Ta metallic glass at 300 K between present MD simulation and experimental values; (c) the g(r) curves of metal Ta system for t = 0 ps and 2000 ps at different temperatures.

    图 3  最大标准团簇(LSC)拓扑结构示意图 (a)最大标准团簇(LSC); (b), (d) 共有近邻子团簇(CNS); (c), (e) 共有近邻(CNN) (小球上的数字代表原子在当前模拟系统中的编号)

    Fig. 3.  Topology of a largest standard cluster (LSC): (a) A [12/555 2/666] Kasper cluster composed of a central atom (labeled 7031) and 14 neighbors; (b) a common neighbor subcluster (CNS) of 666 composed of a bonded reference pair (labeled 7031 and 8877) and 6 common near neighbors (CNNs); (c) the topology of the 6 CNNs; (d) the CNS of 555 and (e) the topology of its 5 CNNs. The number on the ball represents the ID of atoms in the current simulation system.

    图 4  金属Ta体系中典型的LSC示意图

    Fig. 4.  Schematic diagram of typical LSCs in metal Ta system.

    图 5  钽过冷液体结晶过程中典型LSC的比例$ {F}_{\rm{LSC}} $随时间t的演化 (a) 1800 K; (b) 1850 K; (c) 1900 K; (d) 1950 K. (内插小图是局部放大)

    Fig. 5.  The evolution of the fraction $ {F}_{\rm{LSC}} $ of typical LSCs with time t during the crystallization process of supercooled liquid tantalum: (a) 1800 K; (b) 1850 K; (c) 1900 K; (d) 1950 K. The inset is the zoom.

    图 6  A15相结构示意图 (a)1800 K金属Ta体系中的A15相晶体结构(t = 2000 ps); (b)A15晶体相的单胞结构(浅蓝色球表示二十面体团簇原子, 橙色球表示Z14团簇原子); (c) A15相超晶胞($ 2\times 2\times 1 $)中的Z14团簇(橙色) 和二十面体团簇(浅蓝色)示意图(双手球代表共享原子)

    Fig. 6.  Schematic diagram of A15 phase structure: (a) A15 phase crystal structure in metal Ta system at 1800 K (t = 2000 ps); (b) unit cell of A15 crystal phase (blue balls represent the atoms of icosahedra, while orange ball represents the atom of Z14 clusters); (c) schematic diagram of Z14 cluster (orange) and icosahedron (light blue) in a supercell (2 × 2 × 1) of A15 phase (double handball represents the shared atom).

    图 7  钽过冷液体的中程序(MRO)原子分数f随时间t的演化 (a) 1850 K; (b) 1900 K

    Fig. 7.  The time t evolution of the atomic fraction f of medium-range order (MRO) during the crystallization of supercooled liquid tantalum: (a) 1850 K; (b) 1900 K. The $ {\rm{B}} - {\rm{MRO}}$ and ${\rm{Z}} - {\rm{MRO}} $ respectively represents the MRO of BCC and the MRO composed by Z12 and Z14 clusters, while the $ {\rm{max}} $ and $ {\rm{S}} $ denotes the maximum MRO and the total MROs, respectively.

    图 8  Ta过冷液体晶化过程中的B-MRO和Z-MRO中心原子的空间分布 (a) 1850 K; (b) 1900 K. (其中浅蓝色球代表Z12团簇原子, 橙色球代表Z14团簇原子, 绿色球代表BCC团簇原子)

    Fig. 8.  Spatial distribution of central atoms of B-MRO and Z-MRO during crystallization of supercooled liquid Ta: (a) 1850 K; (b) 1900 K. (The light blue spheres represent Z12 cluster atoms, the orange spheres represent Z14 ones, and the green spheres denote BCC atoms)

  • [1]

    王锦程, 郭灿, 张琪, 唐赛, 李俊杰, 王志军 2018 金属学报 54 204Google Scholar

    Wang J C, Guo C, Zhang Q, Tang S, Li J J, Wang Z J 2018 Acta Metall. Sin. 54 204Google Scholar

    [2]

    刘丽霞, 侯兆阳, 刘让苏 2012 物理学报 61 056101Google Scholar

    Liu L X, Hou Z Y, Liu R S 2012 Acta Phys. Sin. 61 056101Google Scholar

    [3]

    Shibuta Y, Sakane S, Takaki T, Ohno M 2016 Acta Mater. 105 328Google Scholar

    [4]

    Sun Y, Song H J, Zhang F, Yang L, Ye Z, Mendelev M I, Wang C Z, Ho K M 2018 Phys. Rev. Lett. 120 085703Google Scholar

    [5]

    Okita S, Verestek W, Sakane S, Takaki T, Ohno M, Shibuta Y 2017 J. Cryst. Growth 474 140Google Scholar

    [6]

    Herlach D M, Kobold R, Klein S 2018 JOM 70 726Google Scholar

    [7]

    Sosso G C, Chen J, Cox S J, Fitzner M, Pedevilla P, Zen A, Michaelides A 2016 Chem. Rev. 116 7078Google Scholar

    [8]

    Leines G D, Drautz R, Rogal J 2017 J. Chem. Phys. 146 154702Google Scholar

    [9]

    Turnbull D 1969 Contemp. Phys. 10 473Google Scholar

    [10]

    Wen D D, Deng Y H, Dai X Y, Tian Z A, Peng P 2019 Philos. Mag. 99 2904Google Scholar

    [11]

    Chung S Y, Kim Y M, Kim J G, Kim Y J 2009 Nat. Phys. 5 68Google Scholar

    [12]

    Zhong L, Wang J W, Sheng H W, Zhang Z, Mao S X 2014 Nature 512 177Google Scholar

    [13]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [14]

    https://sites.google.com/site/eam potentials/Ta [2020-5-4]

    [15]

    Wu Z W, Li M Z, Wang W H, Song W J, Liu K X 2013 J. Chem. Phys. 138 074502Google Scholar

    [16]

    Wu Z, Mo Y, Lang L, Yu A, Xie Q, Liu R, Tian Z 2018 Phys.Chem.Chem.Phys. 20 28088Google Scholar

    [17]

    Zhang J C, Chen C, Pei Q X, Wan Q, Zhang W X, Sha Z D 2015 Mater. Des. 77 1Google Scholar

    [18]

    Tian Z A, Liu R S, Dong K J, Yu A B 2011 Europhys. Lett. 96 36001Google Scholar

    [19]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379Google Scholar

    [20]

    Wen D D, Deng Y H, Liu J, Tian Z A, Peng P 2017 Comput. Mater. Sci. 140 275Google Scholar

    [21]

    Gabriele C S, Ji C, Stephen J C, Martin F, Philipp P, Andrea Z, Angelos M 2016 Chemical Review 116 7078

    [22]

    文大东, 彭平, 蒋元祺, 田泽安, 刘让苏 2013 物理学报 62 196101Google Scholar

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S 2013 Acta Phys. Sin. 62 196101Google Scholar

    [23]

    Cortella L, Vinet B 1993 Phys. Rev. Lett. 70 1469Google Scholar

    [24]

    Wolde ten P R, Montero M J R, Frenke D 1995 Phys. Rev. Lett. 75 2714Google Scholar

    [25]

    John A M, James F B, Robert E R, Per S, Frederick H S, Lin H Y 2002 J. Phys. Condens. Matter 14 2825Google Scholar

    [26]

    Jakse N, Bacq O L, Pasturel A 2004 Phys. Rev. B 70 174203Google Scholar

    [27]

    Schenk T, Moritz D H, Simonet V, Bellissent R, Herlach D M 2002 Phys. Rev. Lett. 89 075507Google Scholar

    [28]

    Zhang Q, Wang J C, Tang S, Wang Y J, Li J J, Zhou W Q, Wang Z J 2019 Phys. Chem. Chem. Phys. 21 4122Google Scholar

    [29]

    Wu Z Z, Mo Y F, Lang L, Yu A B, Xie Q, Liu R S, Tian Z A 2018 Phys. Chem. Chem. Phys. 20 28088

  • [1] 安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋. 尺寸依赖的CoCrFeNiMn晶体/非晶双相高熵合金塑性变形机制的分子动力学模拟. 物理学报, 2022, 71(24): 243101. doi: 10.7498/aps.71.20221368
    [2] 张博佳, 安敏荣, 胡腾, 韩腊. 镁中位错和非晶作用机制的分子动力学模拟. 物理学报, 2022, 71(14): 143101. doi: 10.7498/aps.71.20212318
    [3] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响. 物理学报, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [4] 武振伟, 汪卫华. 非晶态物质原子局域连接度与弛豫动力学. 物理学报, 2020, 69(6): 066101. doi: 10.7498/aps.69.20191870
    [5] 刘琪, 管鹏飞. La65X35(X=Ni,Al)非晶合金原子结构的第一性原理研究. 物理学报, 2018, 67(17): 178101. doi: 10.7498/aps.67.20180992
    [6] 颜笑, 辛子华, 张娇娇. 碳硅二炔结构及性质分子动力学模拟研究. 物理学报, 2013, 62(23): 238101. doi: 10.7498/aps.62.238101
    [7] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响. 物理学报, 2013, 62(3): 036101. doi: 10.7498/aps.62.036101
    [8] 徐志欣, 李家云, 孙民华, 姚秀伟. 非晶纳米Ni500团簇等温晶化过程中的结构与动力学研究. 物理学报, 2013, 62(18): 186101. doi: 10.7498/aps.62.186101
    [9] 董垒, 王卫国. 纯铜[0 1 1]倾侧型非共格3晶界结构稳定性分子动力学模拟研究. 物理学报, 2013, 62(15): 156102. doi: 10.7498/aps.62.156102
    [10] 陈青, 王淑英, 孙民华. 纳米Cu颗粒等温晶化过程的分子动力学模拟研究. 物理学报, 2012, 61(14): 146101. doi: 10.7498/aps.61.146101
    [11] 夏冬, 王新强. 超细Pt纳米线结构和熔化行为的分子动力学模拟研究. 物理学报, 2012, 61(13): 130510. doi: 10.7498/aps.61.130510
    [12] 刘丽霞, 侯兆阳, 刘让苏. 过冷液体钾形核初期微观动力学机理的模拟研究. 物理学报, 2012, 61(5): 056101. doi: 10.7498/aps.61.056101
    [13] 贺平逆, 宁建平, 秦尤敏, 赵成利, 苟富均. 低能Cl原子刻蚀Si(100)表面的分子动力学模拟. 物理学报, 2011, 60(4): 045209. doi: 10.7498/aps.60.045209
    [14] 颜超, 段军红, 何兴道. 低能原子沉积在Pt(111)表面的分子动力学模拟. 物理学报, 2010, 59(12): 8807-8813. doi: 10.7498/aps.59.8807
    [15] 孟丽娟, 李融武, 刘绍军, 孙俊东. 异质原子在Cu(001)表面扩散的分子动力学模拟. 物理学报, 2009, 58(4): 2637-2643. doi: 10.7498/aps.58.2637
    [16] 金年庆, 滕玉永, 顾 斌, 曾祥华. 稀有气体原子注入缺陷性纳米碳管的分子动力学模拟. 物理学报, 2007, 56(3): 1494-1498. doi: 10.7498/aps.56.1494
    [17] 赵九洲, 刘 俊, 赵 毅, 胡壮麒. 压力对非晶铜形成影响的分子动力学模拟. 物理学报, 2007, 56(1): 443-445. doi: 10.7498/aps.56.443
    [18] 杨 弘, 陈 民. 深过冷液态Ni2TiAl合金热物理性质的分子动力学模拟. 物理学报, 2006, 55(5): 2418-2421. doi: 10.7498/aps.55.2418
    [19] 王昶清, 贾 瑜, 马丙现, 王松有, 秦 臻, 王 飞, 武乐可, 李新建. 不同温度下Si(001)表面各种亚稳态结构的分子动力学模拟. 物理学报, 2005, 54(9): 4313-4318. doi: 10.7498/aps.54.4313
    [20] 戚泽明, 施朝淑, 王正, 魏亚光, 谢亚宁, 胡天斗, 李福利. 非晶和纳米ZrO2·Y2O3(15%)的X射线衍射与扩展X射线吸收精细结构研究. 物理学报, 2001, 50(7): 1318-1323. doi: 10.7498/aps.50.1318
计量
  • 文章访问数:  5425
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-04
  • 修回日期:  2020-06-14
  • 上网日期:  2020-06-17
  • 刊出日期:  2020-10-05

/

返回文章
返回