-
N3+离子与基态He原子碰撞过程在天体物理、星际空间和实验室等离子体环境中具有重要研究意义。本文采用从头算的多参考单双激发组态相互作用方法精确计算了[NHe]3+碰撞体系的分子结构参数,包括势能曲线和耦合矩阵元等。基于计算得到的结构参数,采用全量子分子轨道强耦合方法开展了低能N3+离子与He原子碰撞电荷转移过程研究,获得了能量在3.16×10-3 eV至24 keV(即2.25×10-4 eV/u-1.73 keV/u)范围内的总的单电荷、双电荷转移截面和态选择截面。在计算中考虑了电荷平动因子、高角动量态对碰撞过程的影响,发现高角动量态对电荷转移截面的影响非常大。与现有实验和理论结果相比,当前计算的单电荷和双电荷转移截面与实验测量值更为接近。相较于Liu等人[Phys.Rev.A 84,042706,(2011)]未考虑高角动量态的研究,当碰撞能量大于10 eV/u时,其总单电荷转移截面约高出当前计算值2-3倍,表明高角动量态对电荷转移过程具有显著影响。同时研究表明单电荷转移截面远大于双电荷转移截面,在碰撞电荷转移过程中占据主导地位。The collision processes between N3+ ions and He atom is of great significance in astrophysics, interstellar space and laboratory plasma environment. The single and double charge transfer processes for the collisions of N3+ with He atom are studied by using the quantum-mechanical molecular-orbital close-coupling (QMOCC) method. The ab initio multireference single- and double-excitation configuration interaction (MRD-CI) method was employed to obtain the adiabatic potentials and the radial and rotational coupling matrix elements that are required in the QMOCC calculation. In the present QMOCC calculations, 10 1Σ states, 8 1Π states and 4 1△ states are considered, and total single and double charge transfer cross sections and state selection cross sections are calculated in the energy region from 3.16×10-3 eV-24 keV (i.e., 2.25×10-4 eV/u - 1.73 keV/u). Compared our results with the previous theoretical and experimental results, it can be found that our results agree well with the experimental values for the total double charge transfer (DCT) cross sections. For the total single charge transfer (SCT) cross sections, our QMOCC results are slightly higher than the experimental results in the energy region 0.2-11 eV/u. When the energy higher than 11 eV/u, the present QMOCC results are in good agreement with the experimental results. The total SCT cross section is significantly larger than the total DCT cross section, so SCT processes is the dominant reaction process. For the SCT process, it can be observed that the charge transfer to N2+(2s2p2 2D) and N2+(2s22p 2Po) is very important. It should be noted that although we and Liu et al. [Phys. Rev. A 84, 042706, (2011)] both used the QMOCC method to study the charge transfer cross section, our calculation results are still significantly different from their calculation results. It is due to that Liu et al. calculations only considered 10 1Σ states and 8 1Π states, and ignored the effect of 1△ states.
-
Keywords:
- charge transfer /
- cross sections /
- high angular momentum states
-
[1] Zhu Y H, Yuan X, Wu Y, Wang J G 2023 Acta Phys. Sin. 72 163401 (朱宇豪, 袁翔, 吴勇, 王建国 2023 物理学报 72 163401)
[2] Liu C H 2009 Ph. D. Dissertation (Beijing: University of the Chinese Academy of Sciences) [刘春华 2009 博士学位论文 (北京: 中国科学院大学) ]
[3] Gao Z M, Chen X M, Liu Z Y, Ding B W, Lu Y X, Fu H B, Liu Y W, Du J, Cui Y, Shao J X, Zhang H Q, Sun G Z 2007 Acta Phys. Sin. 56 2079(高志民,陈熙萌,刘兆远,丁宝卫,鲁彦霞,付宏斌,刘玉文,杜娟,崔莹,邵剑雄,张红强,孙光智 2007 物理学报 56 2079)
[4] Lin X H 2019 Ph. D. Dissertation (Beijing: Beijing Institute of Technology) [林晓贺 2019 博士学位论文 (北京: 北京理工大学) ]
[5] Rice J E, Marmar E S, Terry J L, Källne E, Källne J 1986 Phys. Rev. A 56 1
[6] Steigman G 1975 Astrophys J. 199 642
[7] Liu X J, Wang J G, Qu Y Z, Buenker R J 2011 Phys. Rev. A 84 042706
[8] Kamber E Y, Akgüngör K, Leather C, Brenton A G 1996 Phys. Rev. A 54 1452
[9] Ishii K, Itoh A, Okuno K 2004 Phys. Rev. A 70 042716
[10] Gardner L D, Bayfield J E, Koch P M, Sellin I A, Pegg D J, Peterson R S, Mallory M L, Crandall D H 1979 Phys. Rev. A 20 766
[11] Buenker R J, Liebermann H P, Izgorodina E I 2003 Chem. Phys. 291 115
[12] Buenker R J, Peyerimhoff S D 1974 Theoret. Chim. Acta 35 33
[13] Krebs S, Buenker R J 1995 J. Chem. Phys. 103 5613
[14] Wu Y, Liu L, Wang J G 2008 Acta Phys. Sin. 57 947(吴勇,刘玲,王建国 2008 物理学报 57 947)
[15] Nolte J L, Stancil P C, Liebermann H P, Buenker R J, Hui Y,Schultz D R 2012 J. Phys. B: At. Mol. Opt. Phys. 45 245202
[16] Zygelman B, Cooper D L, Ford M J, Dalgarno A, Gerratt J, Raimondi M 1992 Phys. Rev. A 46 7
[17] Wu Y, Stancil P C, Liebermann H P, Funke P, Rai, S N, Buenker R J, Schultz D R, Hui Y, Draganic I N, Havener C C 2011 Phys. Rev. A 84 022711
[18] Errea L F, Mendez L, Riera A 1982 J. Phys. B 15 101
[19] Bacchus M C, Ceyzeriat P 1998 Phys. Rev. A 58 1162
[20] Errea L F, Harel C, Jouini H, Mendez L, Pons B, Riera A 1994 J. Phys. B 27 3603
[21] Wang K, Dong C, Qu Y Z, Wu Y, Lin X H, Buenker R J 2023 Chin. Phys. B 32 083103
[22] Wang K, Wang X X, Qu Y Z, Liu C H, Liu L, Wu Y, Buenker R J 2020 Chin. Phys. Lett. 37 023401
[23] Xu J W, Zhu X L, Feng W T, Zhao D M, Huang W Z, Guo D L, Gao Y, Zhang S F, Shan X, Chen X J, Ma X W 2019 xrs. 49 1
[24] Lin M J, Li R, Lin X H, Ren X H 2024 AISOMT 10992121 139
[25] Kramida, A, Ralchenko Y, Reader J, NIST ASD Team 2024 NIST Atomic Spectra Database (ver. 5.12)
[26] Mondal M, Mandal B, Mistry T, Jana D, Purkait M 2024 Chin. Phys. B 33 113401
计量
- 文章访问数: 61
- PDF下载量: 0
- 被引次数: 0