搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低能区N3+离子与He原子碰撞电荷转移截面研究

林晓贺 林敏娟 王堃 吴勇 任元 王瑜 李婕维

引用本文:
Citation:

低能区N3+离子与He原子碰撞电荷转移截面研究

林晓贺, 林敏娟, 王堃, 吴勇, 任元, 王瑜, 李婕维

Charge transfer cross sections of collisions of N3+ ions with He atoms in low energy region

LIN Xiaohe, LIN Minjuan, WANG Kun, WU Yong, REN Yuan, WANG Yu, LI Jiewei
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • N3+离子与基态He原子碰撞过程在天体物理、星际空间和实验室等离子体环境中具有重要研究意义. 本文采用从头算的多参考单双激发组态相互作用方法精确计算了[NHe]3+碰撞体系的分子结构参数, 包括势能曲线和耦合矩阵元等. 基于计算得到的结构参数, 采用全量子分子轨道强耦合方法开展了低能N3+离子与He原子碰撞电荷转移过程研究, 获得了能量在3.16 × 10–3 eV—24 keV(即2.25 × 10–4 eV/u—1.73 keV/u)范围内的总单电荷、双电荷转移截面和态选择截面. 在计算中考虑了电荷平动因子、高角动量态对碰撞过程的影响, 发现高角动量态对电荷转移截面具有显著影响. 与现有实验和理论结果相比, 当前计算的单电荷和双电荷转移截面与实验测量值更为接近. 相较于Liu等(2011 Phys. Rev. A 84 042706)未考虑高角动量态的研究, 当碰撞能量大于10 eV/u时, 其总单电荷转移截面约高出当前计算值2—3倍, 表明高角动量态对电荷转移过程具有显著影响. 同时研究表明单电荷转移截面远大于双电荷转移截面, 在碰撞电荷转移过程中占据主导地位. 本文数据集可在https://doi.org/10.57760/sciencedb.j00213.00165中访问获取.
    The collision process between N3+ ions and He atoms is of great significance in astrophysics, interstellar space and laboratory plasma environment. The single- and double-charge transfer processes for the collisions of N3+ with He atoms are studied by using the quantum-mechanical molecular-orbital close-coupling (QMOCC) method. The ab initio multireference single- and double-excitation configuration interaction (MRD-CI) methods are employed to obtain the adiabatic potentials and the radial and rotational coupling matrix elements that are required in the QMOCC calculation. In the present QMOCC calculations, 10 1Σ states, 8 1Π states and 4 1Δ states are considered, and total single- and double-charge transfer cross sections and state selection cross sections are calculated in an energy region from 3.16 × 10–3 eV–24 keV (i.e., 2.25 × 10–4 eV/u–1.73 keV/u). Comparison of our results with the previous theoretical and experimental results shows that our results agree well with the experimental values for the total double-charge transfer (DCT) cross sections. For the total single-charge transfer (SCT) cross sections, our QMOCC results are slightly higher than the experimental results in an energy region of 0.2–11 eV/u. When the energy is higher than 11 eV/u, the present QMOCC results are in good agreement with the experimental results. The total SCT cross section is significantly larger than the total DCT cross section, so SCT process is a dominant reaction process. For the SCT process, it can be observed that the charge transfer to N2+(2s2p2 2D) and N2+(2s22p 2Po) is very important. It should be noted that although we and Liu et al. [Phys. Rev. A 84, 042706, (2011)] both used the QMOCC method to study the charge transfer cross section, our calculation results are still significantly different from their calculation results. It is due to the fact that Liu et al.’s calculations only considered 10 1Σ states and 8 1Π states, and ignored the effect of 1Δ states.The datasets presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00165.
  • 图 1  NHe3+碰撞体系单重态的绝热势能曲线

    Fig. 1.  Adiabatic potential curves of the singlet of NHe3+ collision system.

    图 2  NHe3+碰撞体系单重态相邻两1Σ态间的径向耦合矩阵元

    Fig. 2.  Radial coupling matrix elements between the adjacent 1Σ states for NHe3+ collision system.

    图 3  NHe3+碰撞体系单重态相邻两1Π态间的径向耦合矩阵元

    Fig. 3.  Radial coupling matrix elements between the adjacent 1Π states for NHe3+ collision system.

    图 4  NHe3+碰撞体系单重态相邻两1Δ态间的径向耦合矩阵元

    Fig. 4.  Radial coupling matrix elements between the adjacent 1Δ states for NHe3+ collision system.

    图 5  NHe3+碰撞体系单重态部分重要的转动耦合矩阵元

    Fig. 5.  Some important singlet rotational coupling matrix elements for NHe3+ collision system.

    图 6  N3+离子与基态He原子碰撞总的单、双电荷转移截面

    Fig. 6.  Total single and double charge transfer cross sections in N3+-He collisions.

    图 7  N3+离子与基态He原子碰撞电荷转移形成N+离子的态选择截面

    Fig. 7.  State selective cross sections for charge transfer to N+ ion in N3+-He collisions.

    图 8  N3+离子与基态He原子碰撞电荷转移形成N2+离子的态选择截面

    Fig. 8.  State selective cross sections for charge transfer to N2+ ion in N3+-He collisions.

    表 1  NHe3+单重态渐近区各能级与NIST表[21]中结果的对比.

    Table 1.  Compared the energy levels in the asymptotic region of the singlet state of NHe3+ with the results in NIST[21].

    渐进原子态 分子态 Energy/eV
    MRD-CI NIST[21] Errors
    N2+( 2s22p 2Po)+He+(1s) 11Σ, 11Π 0.0000 0.0000 0.0000
    N2+( 2s 2p2 2D)+He+(1s) 21Σ, 11Δ, 21Π 12.5087 12.5254 0.0167
    N2+( 2s2p2 2P)+He+(1s) 31Π 18.0958 18.0863 0.0095
    N2+(2s2p2 2S)+He+(1s) 31Σ 16.2564 16.2425 0.0139
    N3+(2s2 1S)+He(1s2) 41Σ 22.8803 22.8579 0.0224
    N2+((2p3 2Do)+He+(1s) 41Π, 21Δ 25.1239 25.1780 0.0541
    N+(2s22p2 1D)+He2+ 51Σ, 51Π, 31Δ 26.7503 26.7150 0.0353
    N2+(2s23s 2S)+He+(1s) 61Σ 27.4341 37.4380 0.0039
    N2+(2p3 2Po)+He+(1s) 71Σ, 61Π 28.5454 28.5665 0.0211
    N+(2s22p2 1S)+He2+ 81Σ 28.9204 28.8690 0.0514
    N2+(2s23p 2Po)+He+(1s) 91Σ, 71Π 30.4405 30.4586 0.0181
    N2+(2s23d 2D)+He+(1s) 101Σ, 81Π, 41Δ 33.1233 33.1333 0.0100
    N2+(2s2p3s 2Po)+He+(1s) 111Σ, 91Π 36.8428 36.8421 0.0007
    N2+(2s2p3p 2P)+He+(1s) 101Π 38.2795 38.3274 0.0479
    下载: 导出CSV
  • [1]

    朱宇豪, 袁翔, 吴勇, 王建国 2023 物理学报 72 163401

    Zhu Y H, Yuan X, Wu Y, Wang J G 2023 Acta Phys. Sin. 72 163401

    [2]

    刘春华 2009 博士学位论文 (北京: 中国科学院大学)

    Liu C H 2009 Ph. D. Dissertation (Beijing: University of the Chinese Academy of Sciences

    [3]

    高志民, 陈熙萌, 刘兆远, 丁宝卫, 鲁彦霞, 付宏斌, 刘玉文, 杜娟, 崔莹, 邵剑雄, 张红强, 孙光智 2007 物理学报 56 2079Google Scholar

    Gao Z M, Chen X M, Liu Z Y, Ding B W, Lu Y X, Fu H B, Liu Y W, Du J, Cui Y, Shao J X, Zhang H Q, Sun G Z 2007 Acta Phys. Sin. 56 2079Google Scholar

    [4]

    林晓贺 2019 博士学位论文 (北京: 北京理工大学)

    Lin X H 2019 Ph. D. Dissertation (Beijing: Beijing Institute of Technology

    [5]

    Rice J E, Marmar E S, Terry J L, Källne E, Källne J 1986 Phys. Rev. A 56 1

    [6]

    Steigman G 1975 Astrophys J. 199 642Google Scholar

    [7]

    Liu X J, Wang J G, Qu Y Z, Buenker R J 2011 Phys. Rev. A 84 042706Google Scholar

    [8]

    Mondal M, Mandal B, Mistry T, Jana D, Purkait M 2024 Chin. Phys. B 33 113401Google Scholar

    [9]

    Kamber E Y, Akgüngör K, Leather C, Brenton A G 1996 Phys. Rev. A 54 1452Google Scholar

    [10]

    Ishii K, Itoh A, Okuno K 2004 Phys. Rev. A 70 042716Google Scholar

    [11]

    Gardner L D, Bayfield J E, Koch P M, Sellin I A, Pegg D J, Peterson R S, Mallory M L, Crandall D H 1979 Phys. Rev. A 20 766

    [12]

    Xu J W, Zhu X L, Feng W T, Zhao D M, Huang W Z, Guo D L, Gao Y, Zhang S F, Shan X, Chen X J, Ma X W 2019 X-Ray Spectrometry 49 85

    [13]

    Lin M J, Li R, Lin X H, Ren X H 2024 AISOMT 10992121 139

    [14]

    Buenker R J, Liebermann H P, Izgorodina E I 2003 Chem. Phys. 291 115Google Scholar

    [15]

    Buenker R J, Peyerimhoff S D 1974 Theoret. Chim. Acta 35 33Google Scholar

    [16]

    Krebs S, Buenker R J 1995 J. Chem. Phys. 103 5613Google Scholar

    [17]

    吴勇, 刘玲, 王建国 2008 物理学报 57 947Google Scholar

    Wu Y, Liu L, Wang J G 2008 Acta Phys. Sin. 57 947Google Scholar

    [18]

    Nolte J L, Stancil P C, Liebermann H P, Buenker R J, Hui Y, Schultz D R 2012 J. Phys. B: At. Mol. Opt. Phys. 45 245202Google Scholar

    [19]

    Zygelman B, Cooper D L, Ford M J, Dalgarno A, Gerratt J, Raimondi M 1992 Phys. Rev. A 46 7

    [20]

    Wu Y, Stancil P C, Liebermann H P, Funke P, Rai, S N, Buenker R J, Schultz D R, Hui Y, Draganic I N, Havener C C 2011 Phys. Rev. A 84 022711Google Scholar

    [21]

    Kramida, A, Ralchenko Y, Reader J, NIST ASD Team 2024 NIST Atomic Spectra Database (ver. 5.12

    [22]

    Errea L F, Mendez L, Riera A 1982 J. Phys. B 15 101Google Scholar

    [23]

    Bacchus M C, Ceyzeriat P 1998 Phys. Rev. A 58 1162Google Scholar

    [24]

    Errea L F, Harel C, Jouini H, Mendez L, Pons B, Riera A 1994 J. Phys. B 27 3603Google Scholar

    [25]

    Wang K, Dong C, Qu Y Z, Wu Y, Lin X H, Buenker R J 2023 Chin. Phys. B 32 083103Google Scholar

    [26]

    Wang K, Wang X X, Qu Y Z, Liu C H, Liu L, Wu Y, Buenker R J 2020 Chin. Phys. Lett. 37 023401Google Scholar

  • [1] 田馨, 舒鹏丽, 张珂童, 曾德超, 姚志飞, 赵波慧, 任晓森, 秦丽, 朱强, 魏久焱, 温焕飞, 李艳君, 菅原康弘, 唐军, 马宗敏, 刘俊. Au/CeO2(111)表面吸附的电荷转移特性. 物理学报, doi: 10.7498/aps.74.20241522
    [2] 牛佳洁, 张唯唯, 祁月盈, 高俊文. 高电荷态N6+离子与H原子碰撞中态选择电荷交换过程理论研究. 物理学报, doi: 10.7498/aps.74.20250541
    [3] 李炅远, 孟举, 王克栋. $ {{\mathrm{C}}}_{4}^{-} $离子的低能电子弹性散射研究: 共振态与同分异构. 物理学报, doi: 10.7498/aps.73.20241377
    [4] 张雅婧, 王铭浩, 雷照康, 申文洁, 马嫣嫱, 莫润阳. 多层膜结构载磁微泡声散射特性. 物理学报, doi: 10.7498/aps.71.20220847
    [5] 周利, 王取泉. 等离激元共振能量转移与增强光催化研究进展. 物理学报, doi: 10.7498/aps.68.20190276
    [6] 袁国亮, 李爽, 任申强, 刘俊明. 激发态电荷转移有机体的多铁性研究. 物理学报, doi: 10.7498/aps.67.20180759
    [7] 陈鑫, 颜晓红, 肖杨. Li掺杂少层MoS2的电荷分布及与石墨和氮化硼片的比较. 物理学报, doi: 10.7498/aps.64.087102
    [8] 底马可, 沈光先, 赵云强, 曾若生, 汪荣凯. Ar-H2(D2, T2)碰撞体系的振转相互作用势及散射截面的理论计算. 物理学报, doi: 10.7498/aps.64.133101
    [9] 徐世龙, 胡以华, 赵楠翔, 王阳阳, 李乐, 郭力仁. 金属目标原子晶格结构对其量子雷达散射截面的影响. 物理学报, doi: 10.7498/aps.64.154203
    [10] 高静, 常凯楠, 王鹿霞. 光激发作用下分子与多金属纳米粒子间的电荷转移研究. 物理学报, doi: 10.7498/aps.64.147303
    [11] 宫明艳. He原子和BH分子碰撞体系的转动激发能量转移. 物理学报, doi: 10.7498/aps.60.073401
    [12] 沈光先, 汪荣凯, 令狐荣锋, 杨向东. 不同能量的氦原子与同位素分子H2(D2,T2)碰撞分波截面的理论计算. 物理学报, doi: 10.7498/aps.57.155
    [13] 李应乐, 黄际英, 王明军. Ku波段球体目标系的电磁复合散射研究. 物理学报, doi: 10.7498/aps.57.7630
    [14] 余春日, 宋晓书, 程新路, 杨向东, 申传胜. Ne-HF体系的相互作用势及散射截面的密耦计算. 物理学报, doi: 10.7498/aps.57.3446
    [15] 汪荣凯, 沈光先, 余春日, 杨向东. He-HF(DF,TF)碰撞体系散射截面的理论计算. 物理学报, doi: 10.7498/aps.57.6932
    [16] 余春日, 汪荣凯, 程新路, 杨向东. He-HF体系势能模型对散射截面影响的理论研究. 物理学报, doi: 10.7498/aps.56.2577
    [17] 周克瑾, Yasuhisa Tezuka, 崔明启, 马陈燕, 赵屹东, 吴自玉, Akira Yagishita. 硫化锰电子结构的软X射线共振非弹性散射研究. 物理学报, doi: 10.7498/aps.56.2986
    [18] 麻华丽, 李英兰, 杨保华, 王 锋. C60-聚甲基丙烯酸甲脂复合膜的结构、光学和电荷转移特性. 物理学报, doi: 10.7498/aps.54.2859
    [19] 曹柱荣, 蔡晓红, 于得洋, 杨 威, 卢荣春, 邵曹杰, 陈熙萌. 高电荷态Xe离子与He原子碰撞中的电子转移过程研究. 物理学报, doi: 10.7498/aps.53.2943
    [20] 魏建华, 解士杰, 梅良模. 低维混合金属卤化物中的电荷转移机理. 物理学报, doi: 10.7498/aps.49.1561
计量
  • 文章访问数:  248
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-30
  • 修回日期:  2025-05-30
  • 上网日期:  2025-06-11

/

返回文章
返回