搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激发态电荷转移有机体的多铁性研究

袁国亮 李爽 任申强 刘俊明

引用本文:
Citation:

激发态电荷转移有机体的多铁性研究

袁国亮, 李爽, 任申强, 刘俊明

Excited charge-transfer organics with multiferroicity

Yuan Guo-Liang, Li Shuang, Ren Shen-Qiang, Liu Jun-Ming
PDF
导出引用
  • 随着人们对多铁性的深入了解,越来越多不同类型的有机多铁材料被合成出来.激发态电荷转移有机体的电荷转移网络是由一个提供电子的分子(给体donor,D+)和一个接受电子的分子(受体acceptor,A-)有序排列后构成的.D+A-长程有序排列,其激发态(激子)具有较长寿命和1/2自旋,这是产生室温铁电性和铁磁性的根本原因.激发态容易受外场刺激,因此光照、磁场、电场、应力等能够很好地调控这类材料的铁电极化、磁矩和相应的磁电耦合系数.激发态电荷转移有机体不仅大大丰富了室温多铁材料体系,而且可以为开发新型多功能电子器件提供材料基础和技术储备.
    Multiferroics, showing simultaneous electric and magnetic degree of freedom, has aroused increasing interest due to tailored multiferroic properties and magneto-electric coupling for shaping the development of energy-efficient multifunctional devices. Now, the multiferroics can be classified as two groups:1) inorganic multiferroics, which can be single-phase, multi-phases oxide multiferroic or multiferroic heterojunction and 2) organic counterpart, which is mostly determined by instinct charge-transfer behavior. But it is difficult to find the polarization and the magnetization co-exist in a single-phase oxide multiferroic material, and their coupling range in the multiferroic heterojunction is only several atomic layers, which limits the applications. As a result, more and more different types of organic multiferroics have been studied. Some organic complexes can display dual ferroelectric and ferromagnetic properties at ambient temperature, e.g. thiophene-fullerene donor-acceptor charge-transfer networks. The organic charge-transfer complex is based on electron donor (D+) and acceptor (A-) assembly. D+A- are long-range ordering, the excitons have s lifetime and 1/2 spin, which contributes to the room temperature ferroelectricity and ferromagnetism. The excitons can be excited by external magnetic field, electric field, illumination and stress, and eventually influence the polarization, magnetization and magnetoelectric coupling coefficient. However, there are still many problems to be solved, i.e., searching for new charge-transfer systems and preparing supramolecular co-crystal with ordered molecular chain, further improving magnetoelectric properties; developing the heterojunction technology and epitaxial growth of organic ferroelectric or ferromagnetic systems on excited organic films, which is expected to greatly improve their magnetoelectric coupling effects; inventing more new charge transport organic multiferroic devices to extend the application scope of new multiferroic devices in actual industrial production. Generally speaking, the organic charge-transfer complexes not only greatly enrich the room temperature multiferroics materials, but also provide the technical basis for developing the new multifunctional electronic devices.
      通信作者: 袁国亮, yuanguoliang@njust.edu.cn;liujm@nju.edu.cn ; 刘俊明, yuanguoliang@njust.edu.cn;liujm@nju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51790492,51431006,51472118)和中央高校基本科研业务费专项资金(批准号:30916011104)资助的课题.
      Corresponding author: Yuan Guo-Liang, yuanguoliang@njust.edu.cn;liujm@nju.edu.cn ; Liu Jun-Ming, yuanguoliang@njust.edu.cn;liujm@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51790492, 51431006, 51472118) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 30916011104).
    [1]

    Gao W X, Brennan R, Hu Y, Wuttig M, Yuan G L, Quandt E, Ren S Q 2018 Mater. Today (In Press) DOI: 101016/j.mattod.201801032

    [2]

    Astrov D 1960 Sov. Phys. JETP 11 708

    [3]

    Dzyaloshinskii I E 1960 Sov. Phys. JETP 10 628

    [4]

    Greve H, Woltermann E, Quenzer H J, Wagner B, Quandt E 2010 Appl. Phys. Lett. 96 182501

    [5]

    Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123

    [6]

    Martins P, Lanceros-Mendez S 2013 Adv. Funct. Mater. 23 3371

    [7]

    Zavaliche F, Zhao T, Zheng H, Straub F, Cruz M P, Yang P L, Hao D, Ramesh R 2007 Nano Lett. 7 1586

    [8]

    Chou C C, Taran S, Her J L, Sun C P, Huang C L, Sakurai H, Belik A A, Takayama-Muromachi E, Yang H D 2008 Phys. Rev. B 78 092404

    [9]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V 2003 Science 34 1719

    [10]

    Ratcliff W, Lynn J W, Kiryukhin V, Jain P, Fitzsimmons M R 2016 npj Quantum Mater. 1 16003

    [11]

    Liu J M, Nan C W 2014 Physics 43 88 (in Chinese) [刘俊明, 南策文 2014 物理 43 88]

    [12]

    Wang F, Shen S P, Sun Y 2016 Chin. Phys. B 25 087503

    [13]

    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55

    [14]

    Al Qahtani M S, Alshammari M S, Blythe H J, Fox A M, Gehring G A, Andreev N, Chichkov V, Mukovskii Y 2012 J. Phys.: Conf. Ser. 391 012083

    [15]

    Arkenbout A H, Palstra T T M, Siegrist T, Kimura T 2006 Phys. Rev. B 74 184431

    [16]

    Lawes G, Kenzelmann M, Rogado N, Kim K H, Jorge G A, Cava R J, Aharony A, Entin-Wohlman O, Harris A B, Yildirim T, Huang Q Z, Park S, Broholm C, Ramirez A P 2004 Phys. Rev. Lett. 93 247201

    [17]

    Wang K F, Liu J M, Ren Z F 2009 Adv. Phys. 58 321

    [18]

    Cheong S W, Talbayev D, Kiryukhin V, Saxena A 2018 npj Quantum Mater. 3 19

    [19]

    Sergienko I A, Dagotto E 2006 Phys. Rev. B 73 094434

    [20]

    Hur N, Jeong I K, Hundley M F, Kim S B, Cheong S W 2009 Phys. Rev. B 79 134120

    [21]

    Bukhari S H, Ahmad J 2017 Chin. Phys. B 26 018103

    [22]

    Choi T, Horibe Y, Yi H T, Choi Y J, Wu W D, Cheong S W 2010 Nat. Mater. 9 253

    [23]

    Chatterji T, Ouladdiaf B, Henry P F, Bhattacharya D 2012 J. Phys.: Condens. Matter 24 336003

    [24]

    Zheng H, Wang J, Lofland S E, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca-Riba L, Shinde S R, Ogale S B, Bai F 2004 Science 303 661

    [25]

    Pato-Doldan B, Gomez-Aguirre L C, Bermudez-Garcia J M, Sanchez-Andujar M, Fondado A, Mira J, Castro-Garcia S, Senaris-Rodriguez M A 2013 RSC Adv. 3 22404

    [26]

    Xu G C, Zhang W, Ma X M, Chen Y H, Zhang L, Cai H L, Wang Z M, Xiong R G, Gao S 2011 J. Am. Chem. Soc. 133 14948

    [27]

    Fu D W, Zhang W, Cai H L, Zhang Y, Ge J Z, Xiong R G, Huang S D, Nakamura T 2011 Angew. Chem. Int. Ed. Engl. 50 11947

    [28]

    Jain P, Stroppa A, Nabok D, Marino A, Rubano A, Paparo D, Matsubara M, Nakotte H, Fiebig M, Picozzi S, Choi E S, Cheetham A K, Draxl C, Dalal N S, Zapf V S 2016 npj Quantum Mater. 1 16012

    [29]

    Tian Y, Cong J Z, Shen S P, Chai Y S, Yan L Q, Wang S G, Sun Y 2014 Phys. Status Solidi RRL 8 91

    [30]

    Tian Y, Stroppa A, Chai Y S, Yan L Q, Wang S G, Barone P, Picozzi S, Sun Y 2014 Sci. Rep. 4 6062

    [31]

    Tian Y, Wang W, Chai Y S, Cong J Z, Shen S P, Yan L Q, Wang S G, Han X F, Sun Y 2014 Phys. Rev. Lett. 112 017202

    [32]

    Tayi A S, Shveyd A K, Sue A C, Szarko J M, Rolczynski B S, Cao D, Kennedy T J, Sarjeant A A, Stern C L, Paxton W F 2012 Nature 488 485

    [33]

    Wang Y, Liu J L, Tran H D, Mecklenburg M, Guan X N, Stieg A Z, Regan B C, Martin D C, Kaner R B 2012 J. Am. Chem. Soc. 134 9251

    [34]

    Zhang Z L, Li H S, Luo Z P, Chang S Q, Li Z, Guan M M, Zhou Z Y, Liu M, Grossman J C, Ren S Q 2017 Chem. Mater. 29 9851

    [35]

    Qin W, Jasion D, Chen X M, Wuttig M, Ren S Q 2014 ACS Nano 8 3671

    [36]

    Ren S Q, Wuttig M 2012 Adv. Mater. 24 724

    [37]

    Lohrman J, Liu Y Y, Duan S F, Zhao X Y, Wuttig M, Ren S Q 2013 Adv. Mater. 25 783

    [38]

    Qin W, Lohrman J, Ren S Q 2014 Angew. Chem. Int. Ed. Engl. 53 7316

    [39]

    Wei Q, Gong M G, Chen X M, Shastry T A, Sakidja R, Yuan G L, Hersam M C, Wuttig M, Ren S Q 2015 Adv. Mater. 27 734

    [40]

    Kagawa F, Horiuchi S, Tokunaga M, Fujioka J, Tokura Y 2010 Nat. Phys. 6 169

    [41]

    Torrance J B, Girlando A, Mayerle J J, Crowley J I, Lee V Y, Batail P, Laplaca S J 1981 Phys. Rev. Lett. 47 1747

    [42]

    Lamola A A, Hammond G S 1965 J. Chem. Phys. 43 2129

    [43]

    Ding L J, Yao K L, Fu H H 2011 J. Mater. Chem. 21 449

    [44]

    Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J 1995 Science 270 1789

    [45]

    Brdas J L, Beljonne D, Coropceanu V, Cornil J 2004 Chem. Rev. 104 4971

    [46]

    Hu B, Wu Y 2007 Nat. Mater. 6 985

    [47]

    Qin W, Gao K, Yin S, Xie S J 2013 J. Appl. Phys. 113 193301

    [48]

    Janssen P, Cox M, Wouters S H W, Kemerink M, Wienk M M, Koopmans B 2013 Nat. Commun. 4 2286

    [49]

    Majumdar S, Majumdar H S, Aarnio H, Vanderzande D, Laiho R, Osterbacka R 2009 Phys. Rev. B 79 201202

    [50]

    Baldo M A, OBrien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R 1998 Nature 395 151

    [51]

    Jariwala D, Sangwan V K, Lauhon L J, Marks T J, Hersam M C 2013 Chem. Soc. Rev. 42 2824

    [52]

    Chen X M 2016 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [陈孝敏 2016 博士学位论文 (南京: 南京理工大学)]

    [53]

    Armstrong J N, Hua S Z, Chopra H D 2013 Phys. Status Solidi B 250 387

    [54]

    Callen E R 1960 J. Appl. Phys. 31 S149

    [55]

    Qin W, Chen X M, Li H S, Gong M G, Yuan G L, Grossman J C, Wuttig M, Ren S Q 2015 ACS Nano 9 9373

    [56]

    Xu B B, Li H S, Hall A, Gao W X, Gong M G, Yuan G L, Grossman J, Ren S Q 2015 Sci. Adv. 1 e1501264

    [57]

    Jin J Z, Lu S G, Chanthad C, Zhang Q M, Haque M A, Wang Q 2011 Adv. Mater. 23 3853

    [58]

    Carvell J, Cheng R H, Dowben P A, Yang Q 2013 Appl. Phys. Lett. 103 072902

  • [1]

    Gao W X, Brennan R, Hu Y, Wuttig M, Yuan G L, Quandt E, Ren S Q 2018 Mater. Today (In Press) DOI: 101016/j.mattod.201801032

    [2]

    Astrov D 1960 Sov. Phys. JETP 11 708

    [3]

    Dzyaloshinskii I E 1960 Sov. Phys. JETP 10 628

    [4]

    Greve H, Woltermann E, Quenzer H J, Wagner B, Quandt E 2010 Appl. Phys. Lett. 96 182501

    [5]

    Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123

    [6]

    Martins P, Lanceros-Mendez S 2013 Adv. Funct. Mater. 23 3371

    [7]

    Zavaliche F, Zhao T, Zheng H, Straub F, Cruz M P, Yang P L, Hao D, Ramesh R 2007 Nano Lett. 7 1586

    [8]

    Chou C C, Taran S, Her J L, Sun C P, Huang C L, Sakurai H, Belik A A, Takayama-Muromachi E, Yang H D 2008 Phys. Rev. B 78 092404

    [9]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V 2003 Science 34 1719

    [10]

    Ratcliff W, Lynn J W, Kiryukhin V, Jain P, Fitzsimmons M R 2016 npj Quantum Mater. 1 16003

    [11]

    Liu J M, Nan C W 2014 Physics 43 88 (in Chinese) [刘俊明, 南策文 2014 物理 43 88]

    [12]

    Wang F, Shen S P, Sun Y 2016 Chin. Phys. B 25 087503

    [13]

    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55

    [14]

    Al Qahtani M S, Alshammari M S, Blythe H J, Fox A M, Gehring G A, Andreev N, Chichkov V, Mukovskii Y 2012 J. Phys.: Conf. Ser. 391 012083

    [15]

    Arkenbout A H, Palstra T T M, Siegrist T, Kimura T 2006 Phys. Rev. B 74 184431

    [16]

    Lawes G, Kenzelmann M, Rogado N, Kim K H, Jorge G A, Cava R J, Aharony A, Entin-Wohlman O, Harris A B, Yildirim T, Huang Q Z, Park S, Broholm C, Ramirez A P 2004 Phys. Rev. Lett. 93 247201

    [17]

    Wang K F, Liu J M, Ren Z F 2009 Adv. Phys. 58 321

    [18]

    Cheong S W, Talbayev D, Kiryukhin V, Saxena A 2018 npj Quantum Mater. 3 19

    [19]

    Sergienko I A, Dagotto E 2006 Phys. Rev. B 73 094434

    [20]

    Hur N, Jeong I K, Hundley M F, Kim S B, Cheong S W 2009 Phys. Rev. B 79 134120

    [21]

    Bukhari S H, Ahmad J 2017 Chin. Phys. B 26 018103

    [22]

    Choi T, Horibe Y, Yi H T, Choi Y J, Wu W D, Cheong S W 2010 Nat. Mater. 9 253

    [23]

    Chatterji T, Ouladdiaf B, Henry P F, Bhattacharya D 2012 J. Phys.: Condens. Matter 24 336003

    [24]

    Zheng H, Wang J, Lofland S E, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca-Riba L, Shinde S R, Ogale S B, Bai F 2004 Science 303 661

    [25]

    Pato-Doldan B, Gomez-Aguirre L C, Bermudez-Garcia J M, Sanchez-Andujar M, Fondado A, Mira J, Castro-Garcia S, Senaris-Rodriguez M A 2013 RSC Adv. 3 22404

    [26]

    Xu G C, Zhang W, Ma X M, Chen Y H, Zhang L, Cai H L, Wang Z M, Xiong R G, Gao S 2011 J. Am. Chem. Soc. 133 14948

    [27]

    Fu D W, Zhang W, Cai H L, Zhang Y, Ge J Z, Xiong R G, Huang S D, Nakamura T 2011 Angew. Chem. Int. Ed. Engl. 50 11947

    [28]

    Jain P, Stroppa A, Nabok D, Marino A, Rubano A, Paparo D, Matsubara M, Nakotte H, Fiebig M, Picozzi S, Choi E S, Cheetham A K, Draxl C, Dalal N S, Zapf V S 2016 npj Quantum Mater. 1 16012

    [29]

    Tian Y, Cong J Z, Shen S P, Chai Y S, Yan L Q, Wang S G, Sun Y 2014 Phys. Status Solidi RRL 8 91

    [30]

    Tian Y, Stroppa A, Chai Y S, Yan L Q, Wang S G, Barone P, Picozzi S, Sun Y 2014 Sci. Rep. 4 6062

    [31]

    Tian Y, Wang W, Chai Y S, Cong J Z, Shen S P, Yan L Q, Wang S G, Han X F, Sun Y 2014 Phys. Rev. Lett. 112 017202

    [32]

    Tayi A S, Shveyd A K, Sue A C, Szarko J M, Rolczynski B S, Cao D, Kennedy T J, Sarjeant A A, Stern C L, Paxton W F 2012 Nature 488 485

    [33]

    Wang Y, Liu J L, Tran H D, Mecklenburg M, Guan X N, Stieg A Z, Regan B C, Martin D C, Kaner R B 2012 J. Am. Chem. Soc. 134 9251

    [34]

    Zhang Z L, Li H S, Luo Z P, Chang S Q, Li Z, Guan M M, Zhou Z Y, Liu M, Grossman J C, Ren S Q 2017 Chem. Mater. 29 9851

    [35]

    Qin W, Jasion D, Chen X M, Wuttig M, Ren S Q 2014 ACS Nano 8 3671

    [36]

    Ren S Q, Wuttig M 2012 Adv. Mater. 24 724

    [37]

    Lohrman J, Liu Y Y, Duan S F, Zhao X Y, Wuttig M, Ren S Q 2013 Adv. Mater. 25 783

    [38]

    Qin W, Lohrman J, Ren S Q 2014 Angew. Chem. Int. Ed. Engl. 53 7316

    [39]

    Wei Q, Gong M G, Chen X M, Shastry T A, Sakidja R, Yuan G L, Hersam M C, Wuttig M, Ren S Q 2015 Adv. Mater. 27 734

    [40]

    Kagawa F, Horiuchi S, Tokunaga M, Fujioka J, Tokura Y 2010 Nat. Phys. 6 169

    [41]

    Torrance J B, Girlando A, Mayerle J J, Crowley J I, Lee V Y, Batail P, Laplaca S J 1981 Phys. Rev. Lett. 47 1747

    [42]

    Lamola A A, Hammond G S 1965 J. Chem. Phys. 43 2129

    [43]

    Ding L J, Yao K L, Fu H H 2011 J. Mater. Chem. 21 449

    [44]

    Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J 1995 Science 270 1789

    [45]

    Brdas J L, Beljonne D, Coropceanu V, Cornil J 2004 Chem. Rev. 104 4971

    [46]

    Hu B, Wu Y 2007 Nat. Mater. 6 985

    [47]

    Qin W, Gao K, Yin S, Xie S J 2013 J. Appl. Phys. 113 193301

    [48]

    Janssen P, Cox M, Wouters S H W, Kemerink M, Wienk M M, Koopmans B 2013 Nat. Commun. 4 2286

    [49]

    Majumdar S, Majumdar H S, Aarnio H, Vanderzande D, Laiho R, Osterbacka R 2009 Phys. Rev. B 79 201202

    [50]

    Baldo M A, OBrien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R 1998 Nature 395 151

    [51]

    Jariwala D, Sangwan V K, Lauhon L J, Marks T J, Hersam M C 2013 Chem. Soc. Rev. 42 2824

    [52]

    Chen X M 2016 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [陈孝敏 2016 博士学位论文 (南京: 南京理工大学)]

    [53]

    Armstrong J N, Hua S Z, Chopra H D 2013 Phys. Status Solidi B 250 387

    [54]

    Callen E R 1960 J. Appl. Phys. 31 S149

    [55]

    Qin W, Chen X M, Li H S, Gong M G, Yuan G L, Grossman J C, Wuttig M, Ren S Q 2015 ACS Nano 9 9373

    [56]

    Xu B B, Li H S, Hall A, Gao W X, Gong M G, Yuan G L, Grossman J, Ren S Q 2015 Sci. Adv. 1 e1501264

    [57]

    Jin J Z, Lu S G, Chanthad C, Zhang Q M, Haque M A, Wang Q 2011 Adv. Mater. 23 3853

    [58]

    Carvell J, Cheng R H, Dowben P A, Yang Q 2013 Appl. Phys. Lett. 103 072902

计量
  • 文章访问数:  2244
  • PDF下载量:  206
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-20
  • 修回日期:  2018-06-13
  • 刊出日期:  2018-08-05

激发态电荷转移有机体的多铁性研究

    基金项目: 

    国家自然科学基金(批准号:51790492,51431006,51472118)和中央高校基本科研业务费专项资金(批准号:30916011104)资助的课题.

摘要: 随着人们对多铁性的深入了解,越来越多不同类型的有机多铁材料被合成出来.激发态电荷转移有机体的电荷转移网络是由一个提供电子的分子(给体donor,D+)和一个接受电子的分子(受体acceptor,A-)有序排列后构成的.D+A-长程有序排列,其激发态(激子)具有较长寿命和1/2自旋,这是产生室温铁电性和铁磁性的根本原因.激发态容易受外场刺激,因此光照、磁场、电场、应力等能够很好地调控这类材料的铁电极化、磁矩和相应的磁电耦合系数.激发态电荷转移有机体不仅大大丰富了室温多铁材料体系,而且可以为开发新型多功能电子器件提供材料基础和技术储备.

English Abstract

参考文献 (58)

目录

    /

    返回文章
    返回