搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁电机械天线的阻抗特性分析

宋凯欣 闵书刚 高俊奇 张双捷 毛智能 沈莹 储昭强

引用本文:
Citation:

磁电机械天线的阻抗特性分析

宋凯欣, 闵书刚, 高俊奇, 张双捷, 毛智能, 沈莹, 储昭强

Impedance characteristics of magnetoelectric antennas

Song Kai-Xin, Min Shu-Gang, Gao Jun-Qi, Zhang Shuang-Jie, Mao Zhi-Neng, Shen Ying, Chu Zhao-Qiang
PDF
HTML
导出引用
  • 机械天线被认为是目前能够实现甚低频和超低频天线小型化的新方案. 本文针对1-1型和2-1型磁电机械天线的阻抗特性进行系统研究. 基于天线振子的阻抗曲线和修正的Butterworth-van Dyke模型,分别获得阻抗最小频率$ {f}_{\rm{m}} $、串联谐振频率$ {f}_{\rm{s}} $以及谐振频率$ {f}_{\rm{r}} $. 在此基础上, 本文通过实验分析了驱动电压、偏置磁场和机械品质因数(Q值)对磁电机械天线阻抗特性的影响规律, 并结合磁电机械天线的实际工作频率$ {f}_{\rm{d}} $, 获得了1-1型和2-1型磁电机械天线的电阻和电抗分量. 实验结果表明: 无论是1-1型还是2-1型磁电机械天线, 其电抗分量均小于100 Ω, 基本可以看成一个纯阻性振子. 但是高Q值的磁电机械天线非线性效应强, 且自身阻抗相对较小, 难以支持高驱动电压的加载, 辐射能力有限. 本文对磁电机械天线的设计优化, 特别是在认识其阻抗特性的基础上进行Q值选择, 为下一代高辐射性能天线振子的设计提供了重要数据参考.
    Mechanical antenna, a novel scheme for realizing very low frequency (VLF) and portable transmitters, has been investigated recently. In this work, the impedance characteristics of 1-1 type of and 2-1 type of magnetoelectric (ME) mechanical antennas are systematically studied and compared with each other. Based on the measured frequency-impedance curves and the corresponding modified Butterworth-van Dyke (MBVD) model, three characteristic frequency points, i.e. the minimum impedance frequency $ {f}_{\rm{m}} $, the series resonance frequency $ {f}_{\rm{s}} $, and the resonance frequency $ {f}_{\rm{r}} $ are obtained and discussed. On this basis, the influence of driving voltage, bias magnetic field, and the quality factor (Q value) on ME antenna impedance characteristics are experimentally explored. Finally, the reactance components of both 1-1 type of and 2-1 type of ME antenna are collected by referring to the actual working frequency $ {f}_{\rm{d}} $. Experimental results prove that the resonant ME antennas are basically pure resistive vibrators, while an ME antenna with high Q value normally fails to support high driving field because of the low resistance (< 100 Ω) and the strong nonlinearity. Thus, the field radiation capability in 2-1 type of ME antenna is higher than that in 1-1 typed one. This work provides the ideas for choosing Q value and further optimizing a magnetoelectric antenna based on the understanding of its impedance characteristics.

    更正: 磁电机械天线的阻抗特性分析[物理学报 2022, 71(24): 247502]

    宋凯欣, 闵书刚, 高俊奇, 张双捷, 毛智能, 沈莹, 储昭强. 磁电机械天线的阻抗特性分析. 物理学报, 2022, 71(24): 247502. doi: 10.7498/aps.72.20220591
      通信作者: 高俊奇, gaojunqi@hrbeu.edu.cn ; 储昭强, zhaoqiangchu@hrbeu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52102127)、山东省自然科学基金(批准号: ZR2021QF021)和国防重点实验室基金(批准号: KY10500220007)资助的课题
      Corresponding author: Gao Jun-Qi, gaojunqi@hrbeu.edu.cn ; Chu Zhao-Qiang, zhaoqiangchu@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52102127), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021QF021), and the Foundation of National Defense Key Laboratory, China (Grant No. KY10500220007).
    [1]

    Domann J P, Carman G P 2017 J. Appl. Phys. 121 044905Google Scholar

    [2]

    Troy Olsson P M 2017 A MEchanically Based Antenna (AMEBA) (DARP: HR001117S0007)

    [3]

    Bickford J A, Duwel A E, Weinberg M S, McNabb R S, Freeman D K, Ward P A 2019 IEEE Trans. Antennas Propag. 67 2209Google Scholar

    [4]

    Manteghi M 2019 IEEE Antennas Propag. 61 14

    [5]

    施伟, 周强, 刘斌 2019 物理学报 68 188401Google Scholar

    Shi W, Zhou Q, Liu B 2019 Acta Phys. Sin. 68 188401Google Scholar

    [6]

    崔勇, 王琛, 宋晓 2021 自动化学报 47 1335Google Scholar

    Cui Y, Wang C, Song X 2021 Acta Automatica. Sin. 47 1335Google Scholar

    [7]

    丁春全, 宋海洋 2019 舰船电子工程 39 166Google Scholar

    Ding C Q, Song H Y 2019 Ship Electron. Eng. 39 166Google Scholar

    [8]

    周强, 施伟, 刘斌, 魏志虎, 何攀峰, 张江 2020 国防科技大学学报 4 128Google Scholar

    Zhou Q, Shi W, Liu B, Wei Z H, He P F, Zhang J 2020 J. National Univ. Defense Tech. 4 128Google Scholar

    [9]

    王晓煜, 张雯厚, 孙丽慧, 周鑫, 曹振新, 全鑫 2021 电子学报 49 824Google Scholar

    Wang X Y, Zhang W H, Sun L H, Zhou X, Cao Z X, Quan X 2021 Acta Electron. Sin. 49 824Google Scholar

    [10]

    Xu J R, Leung C M, Zhuang X, Li J F, Bhardwaj S, Volakis J, Viehland D 2019 Sensors 19 853Google Scholar

    [11]

    Luong K Q T, Wang Y 2022 Sensors 22 455Google Scholar

    [12]

    Hassanien A E, Breen M, Li M H, Gong S 2020 Sci. Rep. 10 17006Google Scholar

    [13]

    Zhou P, Popov M A, Liu Y, Bidthanapally R, Filippov D A, Zhang T, Qi Y, Shah P J, Howe B M, McConney M E, Luo Y, Sreenivasulu G, Srinivasan G, Page M R 2019 Phys. Rev. Mater. 3 044403Google Scholar

    [14]

    Kemp M A, Franzi M, Haase A, Jongewaard E, Whittaker M T, Kirkpatrick M, Sparr R 2019 Nat. Commun. 10 1715Google Scholar

    [15]

    Nan T X, Lin H, Gao Y, Matyushov A, Yu G, Chen H, Sun N, Wei S, Wang Z, Li M, Wang X, Belkessam A, Guo R, Chen B, Zhou J, Qian Z, Hui Y, Rinaldi M, McConney M E, Howe B M, Hu Z, Jones J G, Brown G J, Sun N X 2017 Nat. Commun. 8 296Google Scholar

    [16]

    Schneider J D, Domann J P, Panduranga M K, Tiwari S, Shirazi P, Yao Z, Sennott C, Shahan D, Selvin S, McKnight G, Wall W, Candler R N, Wang Y E, Carman G P 2019 J. Appl. Phys. 126 224104Google Scholar

    [17]

    Hassanien A E, Breen M, Li M H, Gong S 2020 J. Appl. Phys. 127 014903Google Scholar

    [18]

    聂长文, 吴瀚舟, 王书豪, 蔡园园, 宋树, Sokolov Oleg, Bichurin M I, 汪尧进 2021 物理学报 70 247501Google Scholar

    Nie C W, Wu H Z, Wang S H, Cai Y Y, Song S, Sokolov Oleg, Bichurin M I, Wang Y J 2021 Acta Phys. Sin. 70 247501Google Scholar

    [19]

    崔勇, 吴明, 宋晓, 黄玉平, 贾琦, 陶云飞, 王琛 2020 物理学报 69 164Google Scholar

    Cui Y, Wu M, Song X, Huang Y P, Jia Q, Tao Y F, Wang C 2020 Acta Phys Sin. 69 164Google Scholar

    [20]

    王琛, 崔勇, 宋晓, 袁海文 2020 物理学报 69 321Google Scholar

    Wang C, Cui Y, Song X, Yuan H W 2020 Acta Phys. Sin. 69 321Google Scholar

    [21]

    Dong C, Wang X, Lin H, Gao Y, Sun N X, He Y, Li M, Tu C, Chu Z, Liang X, Chen H, Wei Y, Zaeimbashi M, Wang X, Lin H, Gao Y, Sun N X 2020 IEEE Antennas Wirel. Propag. Letters 19 398Google Scholar

    [22]

    Chu Z, Dong C, Tu C, He Y, Liang X, Wang J, Wei Y, Chen H, Gao X, Lu C, Zhu Z, Lin Y, Dong S, McCord J, Sun N X 2019 Phys. Rev. Appl. 12 044001Google Scholar

    [23]

    Chu Z, Gao J, Sun Z, Mao Z, Zhang S, Shen Y, Dong S 2021 Appl. Phys. Lett. 119 182901Google Scholar

    [24]

    Chu Z, Shi H, Shi W, Liu G, Wu J, Yang J, Dong S 2017 Adv. Mater. 29 1606022Google Scholar

    [25]

    Dong S, Zhai J, Li J, Viehland D 2006 Appl. Phys. Lett. 89 252904Google Scholar

    [26]

    Cho K H, Priya S 2011 Appl. Phys. Lett. 98 232904Google Scholar

    [27]

    Chen L, Wang Y 2021 Materials (Basel) 14 4730

    [28]

    Karapetyan G, Kaysashev V, Kutepov M, Minasyan T, Kalinin V, Kislitsyn V, Kislitsyn V, Kaidashev E 2020 J. Adv. Dielect. 10 2060009Google Scholar

  • 图 1  (a) 1-1型和(b) 2-1型磁电机械天线结构示意图及实物图; (c) 1-1型和(d) 2-1型磁电机械天线的正、逆磁电系数的频响曲线; 对于正磁电系数的测量, 激励磁场为50 nT; 对于逆磁电系数的测量, 驱动电压为0.7 V

    Fig. 1.  Schematic diagram and the snapshot of 1-1 type (a) of and 2-1 type (b) of magnetoelectric antenna; (c), (d) the direct magnetoelectric coefficient $ {\alpha }_{\rm{M}\rm{E}} $ and the converse counterpart $ {\alpha }_{\rm{E}\rm{M}} $ as a function of driving frequency for 1-1 type (c) of and 2-1 type (d) of magnetoelectric antenna. The driven magnetic field for direct magnetoelectric coefficient measurement and the driven voltage for converse magnetoelectric coefficient measurement is 50 nT and 0.7 V, respectively.

    图 2  不同驱动条件下磁电机械天线的阻抗特性 (a), (b) 不同驱动电压下(a) 1-1型和(b) 2-1型磁电机械天线的阻抗、阻抗角频响曲线; (c), (d) 不同直流偏置磁场下(c) 1-1型和(d) 2-1型磁电机械天线的阻抗频响曲线

    Fig. 2.  Impedance characteristics of 1-1 type (a), (c) of and 2-1 type (b), (d) of magnetoelectric antenna under different drivenconditions: (a), (b) Different driven voltages with constant bias fields; (c), (d) different bias fields with constant driven voltage.

    图 3  磁电机械天线的等效电路MBVD模型

    Fig. 3.  Equivalent circuit MBVD model of magnetoelectric antenna.

    图 4  (a), (c) 1-1型和(b), (d) 2-1型磁电机械天线的实测阻抗曲线及其拟合计算结果. (c), (d)分别标注了对应的3种特征频率$ {f}_{\rm{m}}, {f}_{\rm{s}}, {f}_{\rm{r}} $

    Fig. 4.  Measured and the fitted impedance curves for 1-1 type (a), (c) of and the 2-1 type (b), (d) of magnetoelectric antenna. Three kinds of resonance frequencies $ {f}_{\rm{m}}, {f}_{\rm{s}}, {f}_{\rm{r}} $ are marked on panel (c) and (d).

    图 5  (a), (c) 1-1型和(b), (d) 2-1型磁电机械天线的3种特征频率($ {f}_{\rm{m}}, {f}_{\rm{s}}, {f}_{\rm{r}} $)与驱动电压(a), (b)和偏置磁场(c), (d)的关系.

    Fig. 5.  Three kinds of resonance frequencies $ {f}_{\rm{m}}, {f}_{\rm{s}}, {f}_{\rm{r}} $ for 1-1 type (a), (c) of and 2-1 type (b), (d) of magnetoelectric antenna as a function of the driven voltage (a), (b) and the applied bias field (c), (d).

    图 6  不同驱动电压下, 1-1型(a)和2-1型(b)磁电机械天线辐射场强(以接收螺线管中的感应电流为替代测试对象)的扫频曲线;不同驱动电压下, 1-1型(c)和2-1型(d)磁电机械天线的3种特征频率与实际工作频率(对应于接收信号频响曲线的最高值); 不同激励电压下1-1型(e)和2-1型(f)磁电机械天线实际工作的电阻和相角

    Fig. 6.  Induced current in the pick-up coil as a function of the driving frequency under different driving voltages for 1-1 type (a) of and 2-1 type (b) of magnetoelectric antenna; three kinds of resonance frequencies ($ {f}_{\rm{m}}, {f}_{\rm{s}}, {f}_{\rm{r}} $) and the working frequency $ {f}_{\rm{d}} $ as a function of the driving voltages for 1-1 type (c) of and 2-1 type (d) of magnetoelectric antenna; the resistance component and the phase angle of 1-1 type (e) of and 2-1 type (f) of magnetoelectric antenna under different driving voltage.

    图 7  1-1型和2-1型磁电机械天线辐射能力对比 (a) 1-1型磁电机械天线在正向扫场下的辐射磁场大小; (b) 2-1型磁电机械天线在正反向扫场下的辐射磁场

    Fig. 7.  Comparison of the radiation capability of magnetoelectric antennas with different Q values: The received magnetic field from 1-1 type (a) of and 2-1 type (b) of magnetoelectric antenna by electric field sweeping.

  • [1]

    Domann J P, Carman G P 2017 J. Appl. Phys. 121 044905Google Scholar

    [2]

    Troy Olsson P M 2017 A MEchanically Based Antenna (AMEBA) (DARP: HR001117S0007)

    [3]

    Bickford J A, Duwel A E, Weinberg M S, McNabb R S, Freeman D K, Ward P A 2019 IEEE Trans. Antennas Propag. 67 2209Google Scholar

    [4]

    Manteghi M 2019 IEEE Antennas Propag. 61 14

    [5]

    施伟, 周强, 刘斌 2019 物理学报 68 188401Google Scholar

    Shi W, Zhou Q, Liu B 2019 Acta Phys. Sin. 68 188401Google Scholar

    [6]

    崔勇, 王琛, 宋晓 2021 自动化学报 47 1335Google Scholar

    Cui Y, Wang C, Song X 2021 Acta Automatica. Sin. 47 1335Google Scholar

    [7]

    丁春全, 宋海洋 2019 舰船电子工程 39 166Google Scholar

    Ding C Q, Song H Y 2019 Ship Electron. Eng. 39 166Google Scholar

    [8]

    周强, 施伟, 刘斌, 魏志虎, 何攀峰, 张江 2020 国防科技大学学报 4 128Google Scholar

    Zhou Q, Shi W, Liu B, Wei Z H, He P F, Zhang J 2020 J. National Univ. Defense Tech. 4 128Google Scholar

    [9]

    王晓煜, 张雯厚, 孙丽慧, 周鑫, 曹振新, 全鑫 2021 电子学报 49 824Google Scholar

    Wang X Y, Zhang W H, Sun L H, Zhou X, Cao Z X, Quan X 2021 Acta Electron. Sin. 49 824Google Scholar

    [10]

    Xu J R, Leung C M, Zhuang X, Li J F, Bhardwaj S, Volakis J, Viehland D 2019 Sensors 19 853Google Scholar

    [11]

    Luong K Q T, Wang Y 2022 Sensors 22 455Google Scholar

    [12]

    Hassanien A E, Breen M, Li M H, Gong S 2020 Sci. Rep. 10 17006Google Scholar

    [13]

    Zhou P, Popov M A, Liu Y, Bidthanapally R, Filippov D A, Zhang T, Qi Y, Shah P J, Howe B M, McConney M E, Luo Y, Sreenivasulu G, Srinivasan G, Page M R 2019 Phys. Rev. Mater. 3 044403Google Scholar

    [14]

    Kemp M A, Franzi M, Haase A, Jongewaard E, Whittaker M T, Kirkpatrick M, Sparr R 2019 Nat. Commun. 10 1715Google Scholar

    [15]

    Nan T X, Lin H, Gao Y, Matyushov A, Yu G, Chen H, Sun N, Wei S, Wang Z, Li M, Wang X, Belkessam A, Guo R, Chen B, Zhou J, Qian Z, Hui Y, Rinaldi M, McConney M E, Howe B M, Hu Z, Jones J G, Brown G J, Sun N X 2017 Nat. Commun. 8 296Google Scholar

    [16]

    Schneider J D, Domann J P, Panduranga M K, Tiwari S, Shirazi P, Yao Z, Sennott C, Shahan D, Selvin S, McKnight G, Wall W, Candler R N, Wang Y E, Carman G P 2019 J. Appl. Phys. 126 224104Google Scholar

    [17]

    Hassanien A E, Breen M, Li M H, Gong S 2020 J. Appl. Phys. 127 014903Google Scholar

    [18]

    聂长文, 吴瀚舟, 王书豪, 蔡园园, 宋树, Sokolov Oleg, Bichurin M I, 汪尧进 2021 物理学报 70 247501Google Scholar

    Nie C W, Wu H Z, Wang S H, Cai Y Y, Song S, Sokolov Oleg, Bichurin M I, Wang Y J 2021 Acta Phys. Sin. 70 247501Google Scholar

    [19]

    崔勇, 吴明, 宋晓, 黄玉平, 贾琦, 陶云飞, 王琛 2020 物理学报 69 164Google Scholar

    Cui Y, Wu M, Song X, Huang Y P, Jia Q, Tao Y F, Wang C 2020 Acta Phys Sin. 69 164Google Scholar

    [20]

    王琛, 崔勇, 宋晓, 袁海文 2020 物理学报 69 321Google Scholar

    Wang C, Cui Y, Song X, Yuan H W 2020 Acta Phys. Sin. 69 321Google Scholar

    [21]

    Dong C, Wang X, Lin H, Gao Y, Sun N X, He Y, Li M, Tu C, Chu Z, Liang X, Chen H, Wei Y, Zaeimbashi M, Wang X, Lin H, Gao Y, Sun N X 2020 IEEE Antennas Wirel. Propag. Letters 19 398Google Scholar

    [22]

    Chu Z, Dong C, Tu C, He Y, Liang X, Wang J, Wei Y, Chen H, Gao X, Lu C, Zhu Z, Lin Y, Dong S, McCord J, Sun N X 2019 Phys. Rev. Appl. 12 044001Google Scholar

    [23]

    Chu Z, Gao J, Sun Z, Mao Z, Zhang S, Shen Y, Dong S 2021 Appl. Phys. Lett. 119 182901Google Scholar

    [24]

    Chu Z, Shi H, Shi W, Liu G, Wu J, Yang J, Dong S 2017 Adv. Mater. 29 1606022Google Scholar

    [25]

    Dong S, Zhai J, Li J, Viehland D 2006 Appl. Phys. Lett. 89 252904Google Scholar

    [26]

    Cho K H, Priya S 2011 Appl. Phys. Lett. 98 232904Google Scholar

    [27]

    Chen L, Wang Y 2021 Materials (Basel) 14 4730

    [28]

    Karapetyan G, Kaysashev V, Kutepov M, Minasyan T, Kalinin V, Kislitsyn V, Kislitsyn V, Kaidashev E 2020 J. Adv. Dielect. 10 2060009Google Scholar

  • [1] 宋凯欣, 闵书刚, 高俊奇, 张双捷, 毛智能, 沈莹, 储昭强. 更正: 磁电机械天线的阻抗特性分析[物理学报 2022, 71(24): 247502]. 物理学报, 2023, 72(3): 039901. doi: 10.7498/aps.72.039901
    [2] 蒋黎英, 易颖婷, 易早, 杨华, 李治友, 苏炬, 周自刚, 陈喜芳, 易有根. 基于单层二硫化钼的高品质因子、高品质因数的四波段完美吸收器. 物理学报, 2021, 70(12): 128101. doi: 10.7498/aps.70.20202163
    [3] 安明, 董帅. 电荷媒介的磁电耦合: 从铁电场效应到电荷序铁电体. 物理学报, 2020, 69(21): 217502. doi: 10.7498/aps.69.20201193
    [4] 崔勇, 吴明, 宋晓, 黄玉平, 贾琦, 陶云飞, 王琛. 小型低频发射天线的研究进展. 物理学报, 2020, 69(20): 208401. doi: 10.7498/aps.69.20200792
    [5] 王琛, 崔勇, 宋晓, 袁海文. 基于驻极体材料的机械天线式低频/甚低频通信磁场传播模型. 物理学报, 2020, 69(15): 158401. doi: 10.7498/aps.69.20200314
    [6] 施伟, 周强, 刘斌. 基于旋转永磁体的超低频机械天线电磁特性分析. 物理学报, 2019, 68(18): 188401. doi: 10.7498/aps.68.20190339
    [7] 袁国亮, 李爽, 任申强, 刘俊明. 激发态电荷转移有机体的多铁性研究. 物理学报, 2018, 67(15): 157509. doi: 10.7498/aps.67.20180759
    [8] 周龙, 王潇, 张慧敏, 申旭东, 董帅, 龙有文. 多阶有序钙钛矿多铁性材料的高压制备与物性. 物理学报, 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878
    [9] 吴枚霞, 李满荣. 异常双钙钛矿A2BB'O6氧化物的多铁性. 物理学报, 2018, 67(15): 157510. doi: 10.7498/aps.67.20180817
    [10] 申见昕, 尚大山, 孙阳. 基于磁电耦合效应的基本电路元件和非易失性存储器. 物理学报, 2018, 67(12): 127501. doi: 10.7498/aps.67.20180712
    [11] 黄颖妆, 齐岩, 杜安, 刘佳宏, 艾传韡, 戴海燕, 张小丽, 黄雨嫣. 复合多铁链的磁电耦合行为与外场调控. 物理学报, 2018, 67(24): 247501. doi: 10.7498/aps.67.20181561
    [12] 徐新河, 刘鹰, 甘月红, 刘文苗. 磁电耦合超材料本构矩阵获取方法的研究. 物理学报, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [13] 袁昌来, 周秀娟, 轩敏杰, 许积文, 杨云, 刘心宇. K0.5Na0.5NbO3-LiSbO3-BiFeO3/CuFe2O4复合陶瓷的制备与磁电性能研究. 物理学报, 2013, 62(4): 047501. doi: 10.7498/aps.62.047501
    [14] 宋顾周, 马继明, 王奎禄, 周鸣. 厚针孔射线成像品质因数的研究. 物理学报, 2012, 61(10): 102902. doi: 10.7498/aps.61.102902
    [15] 周文亮, 夏坤, 许达, 仲崇贵, 董正超, 方靖淮. 应变作用下量子顺电材料EuTiO3的磁电性质. 物理学报, 2012, 61(9): 097702. doi: 10.7498/aps.61.097702
    [16] 顾建军, 刘力虎, 岂云开, 徐芹, 张惠敏, 孙会元. 复合薄膜NiFe2 O4-BiFeO3 中的磁电耦合. 物理学报, 2011, 60(6): 067701. doi: 10.7498/aps.60.067701
    [17] 邓恒, 杨昌平, 黄昌, 徐玲芳. 双层钙钛矿La1.8Ca1.2Mn2O7磁性相关I-V非线性与电输运性质. 物理学报, 2010, 59(10): 7390-7395. doi: 10.7498/aps.59.7390
    [18] 仲崇贵, 蒋青, 方靖淮, 葛存旺. 单相ABO3型多铁材料的磁电耦合及磁电性质研究. 物理学报, 2009, 58(5): 3491-3496. doi: 10.7498/aps.58.3491
    [19] 高剑森, 张 宁. Fe掺杂量对双层复合结构BaTi1-zFezO3+δ-Tb1-xDyxFe2-y中磁电耦合的影响. 物理学报, 2008, 57(12): 7872-7877. doi: 10.7498/aps.57.7872
    [20] 杨 颖, 李启昌, 刘俊明, 刘治国. 铁电磁体Pb(Fe1/2Nb1/2)O3的磁电性能研究. 物理学报, 2005, 54(9): 4213-4216. doi: 10.7498/aps.54.4213
计量
  • 文章访问数:  5871
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-30
  • 修回日期:  2022-05-19
  • 上网日期:  2022-12-08
  • 刊出日期:  2022-12-24

/

返回文章
返回