搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe基合金应力感生不可逆磁各向异性机理

张建强 秦彦军 方峥 范晓珍 杨慧雅 邝富丽 翟耀 苗艳龙 赵梓翔 何佳俊 叶慧群 方允樟

引用本文:
Citation:

Fe基合金应力感生不可逆磁各向异性机理

张建强, 秦彦军, 方峥, 范晓珍, 杨慧雅, 邝富丽, 翟耀, 苗艳龙, 赵梓翔, 何佳俊, 叶慧群, 方允樟

Mechanism of stress induced irreversible magnetic anisotropy in Fe-based alloy ribbons

Zhang Jian-Qiang, Qin Yan-Jun, Fang Zheng, Fan Xiao-Zhen, Yang Hui-Ya, Kuang Fu-Li, Zhai Yao, Miao Yan-Long, Zhao Zi-Xiang, He Jia-Jun, Ye Hui-Qun, Fang Yun-Zhang
PDF
HTML
导出引用
  • Fe基合金因独特的磁性能和简单的生产工艺, 被视为是重要的“双绿色”节能材料. 本文对Fe73.5Cu1Nb3Si13.5B9非晶薄带进行不同物理时效处理(张应力退火、回火), 采用动态应变测量技术, 结合纵向驱动巨磁阻抗效应和同步辐射X射线衍射研究应力感生磁各向异性和晶格各向异性的弛豫动力学, 探寻应力感生磁各向异性的物理起源. 结果表明: 退火过程薄带轴向应变在玻璃转变点以下表现为弹性, 在玻璃转变点以上主要表现为塑性; 感生磁各向异性和晶格各向异性表现出不同的弛豫动力学, 数值拟合预言前者通过无限次回火归一化的磁各向异性趋于$ \kappa = 0.144 $的稳态值, 而后者仅通过有限次回火便可弛豫为0; 构建纳米晶分布各向异性模型, 主张应力感生不可逆磁各向异性Kd是由纳米晶分布各向异性$ \Delta \delta $所致, 且满足$ {K_{\text{d}}} = k\Delta \delta $的函数关系. 本文认为应力感生磁各向异性起源于纳米晶晶格各向异性和分布各向异性的协同作用, 对理解应力感生磁各向异性机理具有指导意义.
    Fe-based amorphous and nanocrystalline soft magnetic alloys are regarded as the significant dual-green energy-saving materials because of their superior magnetic properties and straightforward fabrication procedure. As such, they have attracted much attention in the fields of the electronic information and electrical power. In this work, Fe73.5Cu1Nb3Si13.5B9 (%) amorphous alloy ribbon is subjected to various physical ageing treatments in nitrogen atmosphere. These treatments include annealing at 540 ℃ for 30 min under different tensile stresses and isothermal tempering without tensile stress for several cycles. The origin of stress-induced magnetic anisotropy is investigated through using dynamic strain analysis, the longitudinally driven giant magento-impedance effect, and synchrotron radiation X-ray diffraction. In the process of tensile stress annealing, it is found that the axial strain of ribbon is elastic strain when annealing temperature is below the glass transition point, and plastic strain when annealing temperature is above the glass transition point; the precipitation of nanocrystalline phase has a pinning effect on amorphous matrix, which slows down the strain rates and makes the tend stable. Additionally, isothermal tempering studies show that the stress-induced magnetic anisotropy and lattice plane anisotropy have different relaxation patterns. It is found through numerical fitting that the stress-induced magnetic anisotropy can reach a stable value of 0.144 by infinite tempering, whereas the lattice plane anisotropy can only relax to zero by finite tempering. A model of nanocrystalline grain distribution anisotropy is developed to re-examine the origin of stress-induced magnetic anisotropy. It supports a viewpoint that the nanocrystalline grain distribution anisotropy $\Delta \delta $ is responsible for the stress-induced irreversible magnetic anisotropy ${K_{\text{d}}}$, and that their relationship can be described as a following function: ${K_{\text{d}}} = k\Delta \delta $. Therefore, it is proposed that the stress-induced anisotropy originates from a synergistic interaction between the lattice plane anisotropy and the nanocrystalline grain distribution anisotropy in Fe-based alloy ribbon. This work has important implications for understanding the mechanism of the stress-induced magnetic anisotropy.
      通信作者: 张建强, zhjian8386@163.com ; 方允樟, fyz@zjnu.cn
    • 基金项目: 新疆维吾尔自治区重点专项研发项目(批准号: KYZ04Y21100)、国家自然科学基金地区科学基金(批准号: 12064037)、甘肃省科技计划(批准号: 21JR1RE288)、新疆维吾尔自治区自然科学基金(批准号: 2021D01B47)和天水师范学院高级别预研项目(批准号: GJB2021-09)资助的课题.
      Corresponding author: Zhang Jian-Qiang, zhjian8386@163.com ; Fang Yun-Zhang, fyz@zjnu.cn
    • Funds: Project supported by the Key Specialized Research and Development Program of Xinjiang Uygur Autonomous Region, China (Grant No. KYZ04Y21100), the Fund for Less Developed Regions of the National Natural Science Foundation of China (Grant No. 12064037), the Planning Program on Science and Technology of Gansu Province, China (Grant No. 21JR1RE288) , the Natural Science Foundation of Xinjiang Uygur Autonomous Region, China (Grant No. 2021D01B47), and the High level Pre-research program of Tianshui Normal University, China (Grant No. GJB2021-09).
    [1]

    姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽 2018 物理学报 67 016101Google Scholar

    Yao K F, Shi L X, Chen S Q, Shao Y, Chen N, Jia J L 2018 Acta Phys. Sin. 67 016101Google Scholar

    [2]

    Li Y M, Jia X J, Zhang W, Zhang Y, Xie G Q, Qiu Z Y, Luan J H, Jiao Z B 2021 J. Mater. Sci. Technol. 65 171Google Scholar

    [3]

    Corte-Leon P, Zhukova V, Blanco J M, González-Legarreta L, Ipatov M, Zhukov A 2020 J. Magn. Magn. Mater. 510 166939Google Scholar

    [4]

    Sai Ram B, Paul A K, Kulkarni S V 2021 J. Magn. Magn. Mater. 537 16820

    [5]

    Li F C, Liu T, Zhang J Y, Shuang S, Wang Q, Wang A D, Wang J G, Yang Y 2019 Mater. Today Adv. 4 100027Google Scholar

    [6]

    马海健, 魏文庆, 鲍文科, 神祥博, 王长春, 王伟民 2020 稀有金属材料与工程 49 2904

    Ma H J, Wei W Q, Bao W K, Shen X B, Wang C C, Wang W M 2020 Rare Metal Mat. Eng. 49 2904

    [7]

    Liu T, Wang A D, Zhao C L, Yue S Q, Wang X M, Liu C T 2019 Mater. Res. Bull. 112 323Google Scholar

    [8]

    Lukshina V A, Dmitrieva N V, Cerdeira M A, Potapov A P 2012 J. Alloys Compd. 536 374Google Scholar

    [9]

    Correa A M, Bohn F 2018 J. Magn. Magn. Mater. 453 30Google Scholar

    [10]

    Varga L K 2020 J. Magn. Magn. Mater. 500 166327Google Scholar

    [11]

    Fang Y Z, Zheng J J, Wu F M, Xu Q M, Zhang J Q, Ye H Q, Zheng J L, Li T Y 2010 Appl. Phys. Lett. 96 092508Google Scholar

    [12]

    Néel L 1954 J. Phys. 4 225

    [13]

    Hofmann B, Kronmüller H 1996 J. Magn. Magn. Mater. 152 91Google Scholar

    [14]

    Herzer G 1996 J. Magn. Magn. Mater. 157-158 133Google Scholar

    [15]

    Nielsen O V, Nielsen H J V 1980 Solid State Commun. 35 281Google Scholar

    [16]

    Ohnuma M, Hono K, Yanai T, Fukunaga H, Yoshizawa Y 2003 Appl. Phys. Lett. 83 2859Google Scholar

    [17]

    Ohnuma M, Hono K, Yanai T, Nakano H, Fukunaga H, Yoshizawa Y 2005 Appl. Phys. Lett. 86 152513Google Scholar

    [18]

    Ohnuma M, Yanai T, Hono K, Nakano M, Fukunaga H, Yoshizawa Y, Herzer G 2010 J. Appl. Phys. 108 093927Google Scholar

    [19]

    Nutor R K, Xu X J, Fan X Z, He X W, Fang Y Z 2018 Chinese J. Phys. 56 180Google Scholar

    [20]

    Nutor R K, Xu X J, Fan X Z, He X W, Lu X A, Fang Y Z 2019 J. Magn. Magn. Mater. 471 544

    [21]

    Nutor R K, Fan X Z, He X W, Xu X J, Lu X A, Jiang J Z, Fang Y Z 2019 J. Alloys Compd. 774 1243Google Scholar

    [22]

    Kurlyandskaya G V, Lukshina V A, Larrañaga A, Orue I, Zaharova A A, Shishkin D A 2013 J. Alloys Compd. 566 31Google Scholar

    [23]

    Ohnuma M, Herzer G, Kozikowski P, Polak C, Budinsky V, Koppoju S 2012 Acta. Mater. 60 1278Google Scholar

    [24]

    Leary A M, Keylin V, Ohodnicki P R, McHenry M E 2015 J. Appl. Phys. 117 17A338Google Scholar

    [25]

    Herzer G, Schulz R US Patent 6 254 695 B1 [2001-06-03]

    [26]

    Hilzinger H R 1981 Proceedings of the 4th International Conference on Rapidly Quenched Metals Sendai, Japan, August 24–28, 1981 p701

    [27]

    许校嘉, 方峥, 陆轩昂, 叶慧群, 范晓珍, 郑金菊, 何兴伟, 郭春羽, 李文忠, 方允樟 2019 物理学报 68 137501Google Scholar

    Xu X J, Fang Z, Lu X A, Ye H Q, Fan X Z, Zheng J J, He X W, Guo C Y, Li W Z, Fang Y Z 2019 Acta Phys. Sin. 68 137501Google Scholar

    [28]

    Wu C, Chen H P, Lv H P, Yan M 2016 J. Alloys Compd. 673 278Google Scholar

    [29]

    Allia P, Baricco M, Tiberto P, Vinai F 1993 J. Appl. Phys. 74 3137Google Scholar

    [30]

    Fan X Z, He X W, Nutor R K, Pan R M, Zheng J J, Ye H Q, Wu F M, Jiang J Z, Fang Y Z 2019 J. Magn. Magn. Mater. 469 349Google Scholar

    [31]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

  • 图 1  张应力退火过程Fe基合金应变及应变速率曲线 (a) 应变; (b)应变速率

    Fig. 1.  Strain and strain rates curves of Fe-based alloy ribbons during tensile stress annealing: (a) Strains; (b) strain rates.

    图 2  张应力退火Fe基合金残余应变与应力关系曲线 (a) 轴向; (b)横向

    Fig. 2.  Residual macro-strains of Fe-based alloy ribbons as a function of annealing tensile stress: (a) Axial direction; (b) transverse direction.

    图 3  张应力退火Fe基合金薄带 (a) LDGMI效应; (b)磁各向异性与退火张应力关系

    Fig. 3.  Fe-based alloy ribbons annealed with different tensile stress: (a) LDGMI effect; (b) the magnetic anisotropy as a function of annealing tensile stress.

    图 4  Fe基合金薄带SMA的弛豫动力学曲线

    Fig. 4.  Relaxation dynamics curve of SMA in Fe-based alloy ribbons.

    图 5  张应力退火及回火Fe基合薄带XRD谱 (a)轴向; (b)横向

    Fig. 5.  The XRD patterns of Fe-based alloy ribbons annealed with tensile stress and isothermal tempered treatment: (a) The diffraction vector is parallels to ribbon’s axial direction; (b) the diffraction vector is parallels to ribbon’s transverse direction.

    图 6  Fe基合金LPA弛豫动力学曲线

    Fig. 6.  Relaxation dynamics curve of LPA in Fe-based alloy ribbons.

    图 7  自由退火Fe基合金薄带SRXRD图谱 (a)全谱(3°—38°); (b) (110)分峰拟合

    Fig. 7.  The SRXRD patterns of Fe-based alloy ribbons annealed without tensile stress: (a) The full spectrum diagram of SRXRD (3°—38°); (b) the multi-peaks fitting of (110) diffraction peak.

    图 8  NGDA诱导感生磁各向异性与应力关系曲线

    Fig. 8.  Dependence of the magnetic anisotropy induced by NGDA on tensile stress in Fe-based alloy ribbons.

    表 1  自由退火Fe基合金薄带的结构参数

    Table 1.  Structural parameters of Fe-based alloy ribbons annealed without tensile stress.

    衍射矢量晶粒尺寸/nm晶化分数晶粒间隙
    D(110)D(200)D(211)D(220)D(310)Vcr/%δ0/nm
    轴向9.3810.8711.279.4512.9451.042.76
    横向9.3011.7712.0310.4012.6651.272.74
    平均值11.0051.162.75
    下载: 导出CSV

    表 2  张应力退火Fe基合金薄带结构和磁学参数

    Table 2.  Structural and magnetic parameters of Fe-based alloy ribbons annealed with different tensile stress.

    张应力
    σ/MPa
    分布各向异性
    ∆δ/nm
    磁各向异性
    Hk/(A·m–1)K/(J·m–3)Kd/(J·m–3)Ke/(J·m–3)
    0047.5127.250
    530.051181.73692.1499.67592.47
    1170.142001.461229.06176.981052.08
    1700.203194.231972.59284.051688.54
    2230.284540.542777.20399.922377.28
    2700.385645.523495.28503.322991.96
    3430.517335.804498.91647.843851.07
    4100.659380.545786.89833.314953.58
    下载: 导出CSV
  • [1]

    姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽 2018 物理学报 67 016101Google Scholar

    Yao K F, Shi L X, Chen S Q, Shao Y, Chen N, Jia J L 2018 Acta Phys. Sin. 67 016101Google Scholar

    [2]

    Li Y M, Jia X J, Zhang W, Zhang Y, Xie G Q, Qiu Z Y, Luan J H, Jiao Z B 2021 J. Mater. Sci. Technol. 65 171Google Scholar

    [3]

    Corte-Leon P, Zhukova V, Blanco J M, González-Legarreta L, Ipatov M, Zhukov A 2020 J. Magn. Magn. Mater. 510 166939Google Scholar

    [4]

    Sai Ram B, Paul A K, Kulkarni S V 2021 J. Magn. Magn. Mater. 537 16820

    [5]

    Li F C, Liu T, Zhang J Y, Shuang S, Wang Q, Wang A D, Wang J G, Yang Y 2019 Mater. Today Adv. 4 100027Google Scholar

    [6]

    马海健, 魏文庆, 鲍文科, 神祥博, 王长春, 王伟民 2020 稀有金属材料与工程 49 2904

    Ma H J, Wei W Q, Bao W K, Shen X B, Wang C C, Wang W M 2020 Rare Metal Mat. Eng. 49 2904

    [7]

    Liu T, Wang A D, Zhao C L, Yue S Q, Wang X M, Liu C T 2019 Mater. Res. Bull. 112 323Google Scholar

    [8]

    Lukshina V A, Dmitrieva N V, Cerdeira M A, Potapov A P 2012 J. Alloys Compd. 536 374Google Scholar

    [9]

    Correa A M, Bohn F 2018 J. Magn. Magn. Mater. 453 30Google Scholar

    [10]

    Varga L K 2020 J. Magn. Magn. Mater. 500 166327Google Scholar

    [11]

    Fang Y Z, Zheng J J, Wu F M, Xu Q M, Zhang J Q, Ye H Q, Zheng J L, Li T Y 2010 Appl. Phys. Lett. 96 092508Google Scholar

    [12]

    Néel L 1954 J. Phys. 4 225

    [13]

    Hofmann B, Kronmüller H 1996 J. Magn. Magn. Mater. 152 91Google Scholar

    [14]

    Herzer G 1996 J. Magn. Magn. Mater. 157-158 133Google Scholar

    [15]

    Nielsen O V, Nielsen H J V 1980 Solid State Commun. 35 281Google Scholar

    [16]

    Ohnuma M, Hono K, Yanai T, Fukunaga H, Yoshizawa Y 2003 Appl. Phys. Lett. 83 2859Google Scholar

    [17]

    Ohnuma M, Hono K, Yanai T, Nakano H, Fukunaga H, Yoshizawa Y 2005 Appl. Phys. Lett. 86 152513Google Scholar

    [18]

    Ohnuma M, Yanai T, Hono K, Nakano M, Fukunaga H, Yoshizawa Y, Herzer G 2010 J. Appl. Phys. 108 093927Google Scholar

    [19]

    Nutor R K, Xu X J, Fan X Z, He X W, Fang Y Z 2018 Chinese J. Phys. 56 180Google Scholar

    [20]

    Nutor R K, Xu X J, Fan X Z, He X W, Lu X A, Fang Y Z 2019 J. Magn. Magn. Mater. 471 544

    [21]

    Nutor R K, Fan X Z, He X W, Xu X J, Lu X A, Jiang J Z, Fang Y Z 2019 J. Alloys Compd. 774 1243Google Scholar

    [22]

    Kurlyandskaya G V, Lukshina V A, Larrañaga A, Orue I, Zaharova A A, Shishkin D A 2013 J. Alloys Compd. 566 31Google Scholar

    [23]

    Ohnuma M, Herzer G, Kozikowski P, Polak C, Budinsky V, Koppoju S 2012 Acta. Mater. 60 1278Google Scholar

    [24]

    Leary A M, Keylin V, Ohodnicki P R, McHenry M E 2015 J. Appl. Phys. 117 17A338Google Scholar

    [25]

    Herzer G, Schulz R US Patent 6 254 695 B1 [2001-06-03]

    [26]

    Hilzinger H R 1981 Proceedings of the 4th International Conference on Rapidly Quenched Metals Sendai, Japan, August 24–28, 1981 p701

    [27]

    许校嘉, 方峥, 陆轩昂, 叶慧群, 范晓珍, 郑金菊, 何兴伟, 郭春羽, 李文忠, 方允樟 2019 物理学报 68 137501Google Scholar

    Xu X J, Fang Z, Lu X A, Ye H Q, Fan X Z, Zheng J J, He X W, Guo C Y, Li W Z, Fang Y Z 2019 Acta Phys. Sin. 68 137501Google Scholar

    [28]

    Wu C, Chen H P, Lv H P, Yan M 2016 J. Alloys Compd. 673 278Google Scholar

    [29]

    Allia P, Baricco M, Tiberto P, Vinai F 1993 J. Appl. Phys. 74 3137Google Scholar

    [30]

    Fan X Z, He X W, Nutor R K, Pan R M, Zheng J J, Ye H Q, Wu F M, Jiang J Z, Fang Y Z 2019 J. Magn. Magn. Mater. 469 349Google Scholar

    [31]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

  • [1] 许校嘉, 方峥, 陆轩昂, 叶慧群, 范晓珍, 郑金菊, 何兴伟, 郭春羽, 李文忠, 方允樟. 铁基合金薄带多次等温回火特性的研究. 物理学报, 2019, 68(13): 137501. doi: 10.7498/aps.68.20190017
    [2] 李晓东, 李晖, 李鹏善. 同步辐射高压单晶衍射实验技术. 物理学报, 2017, 66(3): 036203. doi: 10.7498/aps.66.036203
    [3] 陈传文, 项阳. 正交各向异性双层交换弹簧薄膜的磁矩分布. 物理学报, 2016, 65(12): 127502. doi: 10.7498/aps.65.127502
    [4] 俱海浪, 李宝河, 吴志芳, 张璠, 刘帅, 于广华. Co/Ni多层膜垂直磁各向异性的研究. 物理学报, 2015, 64(9): 097501. doi: 10.7498/aps.64.097501
    [5] 孙璐, 火炎, 周超, 梁建辉, 张祥志, 许子健, 王勇, 吴义政. 利用扫描透射X射线显微镜观测磁涡旋结构. 物理学报, 2015, 64(19): 197502. doi: 10.7498/aps.64.197502
    [6] 李一丁, 张鹏飞, 张辉, 徐宏亮. 电子磁矩对同步辐射频谱的修正. 物理学报, 2013, 62(9): 094103. doi: 10.7498/aps.62.094103
    [7] 刘娜, 王海, 朱涛. CoFeB/Pt多层膜的垂直磁各向异性研究. 物理学报, 2012, 61(16): 167504. doi: 10.7498/aps.61.167504
    [8] 洪清泉, 仲伟博, 余燕忠, 蔡植善, 陈木生, 林顺达. 电偶极子在磁各向异性介质中的辐射功率. 物理学报, 2012, 61(16): 160302. doi: 10.7498/aps.61.160302
    [9] 顾文娟, 潘靖, 杜薇, 胡经国. 铁磁共振法测磁各向异性. 物理学报, 2011, 60(5): 057601. doi: 10.7498/aps.60.057601
    [10] 洪清泉, 余燕忠, 蔡植善, 陈木生, 林顺达. 磁偶极和电四极在磁各向异性介质中的辐射功率. 物理学报, 2010, 59(8): 5235-5240. doi: 10.7498/aps.59.5235
    [11] 张祥志, 许子健, 甄香君, 王勇, 郭智, 严睿, 常睿, 周冉冉, 邰仁忠. 基于软X射线谱学显微双能衬度图像的元素空间分布研究. 物理学报, 2010, 59(7): 4535-4541. doi: 10.7498/aps.59.4535
    [12] 马丽, 朱志永, 李敏, 于世丹, 崔启良, 周强, 陈京兰, 吴光恒. 铁磁形状记忆合金Mn2NiGa中应力诱发马氏体相的结构和磁性. 物理学报, 2009, 58(5): 3479-3484. doi: 10.7498/aps.58.3479
    [13] 王思胜, 孔蕊弘, 田振玉, 单晓斌, 张允武, 盛六四, 王振亚, 郝立庆, 周士康. Ar?NO团簇的同步辐射光电离研究. 物理学报, 2006, 55(7): 3433-3437. doi: 10.7498/aps.55.3433
    [14] 郭小云, 石才土, 张久昶, 辛洪兵. 永磁扭摆磁铁的同步辐射特性和结构分析. 物理学报, 2006, 55(4): 1731-1735. doi: 10.7498/aps.55.1731
    [15] 李义兵, 李少平. 各向异性磁介质中的静磁交换模. 物理学报, 1989, 38(7): 1177-1181. doi: 10.7498/aps.38.1177
    [16] 曾训一, 陆晓佳, 王亚旗. YIG中生长感生磁各向异性的来源. 物理学报, 1989, 38(11): 1891-1895. doi: 10.7498/aps.38.1891
    [17] 关鹏, 刘宜华. 磁感生各向异性的一个新模型. 物理学报, 1989, 38(7): 1182-1186. doi: 10.7498/aps.38.1182
    [18] 余江, 胡岗. 各向异性扩散DLA的标度性质. 物理学报, 1989, 38(2): 202-208. doi: 10.7498/aps.38.202
    [19] 邝宇平, 翁世浚. 立方晶体铁磁各向异性的自旋波理论. 物理学报, 1964, 20(9): 890-908. doi: 10.7498/aps.20.890
    [20] 向仁生. 关於铬矾单晶的顺磁各向异性. 物理学报, 1957, 13(3): 177-180. doi: 10.7498/aps.13.177
计量
  • 文章访问数:  4102
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-26
  • 修回日期:  2022-09-03
  • 上网日期:  2022-12-09
  • 刊出日期:  2022-12-24

/

返回文章
返回