搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应变调控双组分纳磁体辐射状磁涡旋极性可逆翻转

夏永顺 崔焕卿 杨晓阔 郭宝军 豆树清 康艳 危波 梁卜嘉

引用本文:
Citation:

应变调控双组分纳磁体辐射状磁涡旋极性可逆翻转

夏永顺, 崔焕卿, 杨晓阔, 郭宝军, 豆树清, 康艳, 危波, 梁卜嘉

Strain-driven reversible switching of Radial vortex in a bicomponent nanomagnet

XIA Yongshun, CUI Huanqing, YANG Xiaokuo, GUO Baojun, DOU Shuqing, KANG Yan, WEI Bo, LIANG Bujia
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 辐射状磁涡旋因其拓扑稳定性及纳米级尺寸特性,被视为磁电子器件中极具潜力的信息载体。然而,传统基于磁场或自旋极化电流的辐射状磁涡旋极性翻转方法面临能耗过高的问题。针对这一挑战,本研究提出了一种基于多铁异质结构的新型无场调控方案,该结构由双组分纳磁体(Terfenol-D/Ni)、重金属层及压电层复合构成。其内在对称性破缺特性可有效打破辐射状磁涡旋的圆环对称性,通过磁电耦合效应实现极性翻转的电压驱动调控。基于MuMax3的电-力-磁多场耦合仿真表明,当双组分材料比例dTD:dNi=1:2,界面Dzyaloshinskii-Moriya相互作用(DMI)系数(D)1.2mJ/m2到1.9mJ/m2范围内时,系统稳定呈现辐射状磁涡旋态;当D=1.7mJ/m2时,仅需90mV电压脉冲即实现对双组分纳磁体辐射状磁涡旋极性翻转,能耗较传统方法降低6个数量级(达aJ级别)。通过瞬态磁化动态模拟与能量演化分析,研究揭示了该双组分多铁异质结构中辐射状磁涡旋极性翻转的物理机制:应变作用下的双材料体系能量竞争驱动磁矩重构,实现高效、超低能耗的极性翻转。该方案为磁涡旋存储器的片上集成提供了新路径,开创了非电流驱动型“电写”磁存储器件设计的新范式,在低功耗自旋电子学领域具有重要应用价值。
    Radial magnetic vortices, characterized by their topological stability and nanoscale dimensions, are considered highly promising information carriers in magnetic electronic devices. However, traditional methods for reversing the polarity of radial magnetic vortices, which rely on magnetic fields or spinpolarized currents, encounter significant energy consumption issues. To address this challenge, this study proposes a novel field-free control scheme based on multiferroic heterostructures, consisting of a bicomponent nanomagnet (Terfenol-D/Ni), a heavy metal layer, and a piezoelectric layer. The intrinsic symmetrybreaking property of this structure effectively disrupts the circular symmetry of the radial magnetic vortex, enabling voltage-driven polarity reversal through magnetoelectric coupling effects. MuMax3-based multifield coupling simulations of electro-mechanical-magnetic interactions show that when the ratio of the bicomponent materials dTD : dNi = 1:2 and the interfacial Dzyaloshinskii-Moriya interaction (DMI) coefficient (D) is within the range of 1.2mJ/m2 < D < 1.9mJ/m2, the system stably presents a radial magnetic vortex state. Within this DMI coefficient range, when the thickness of the bicomponent nanomagnet is less than 4 nm, an appropriate radius can be found to ensure that the ground state of the bicomponent nanomagnet is a radial magnetic vortex state. Particularly, when the thickness t = 1 nm, the radius of the bicomponent nanomagnet can remain in the radial magnetic vortex state within the range of 50 ± 10 nm. In addition, this study also verified that both square and elliptical bicomponent nanomagnets have a ground state of radial magnetic vortices. When D = 1.7mJ/m2, only a 90 mV voltage pulse is required to achieve polarity reversal of the bicomponent nanomagnet, with a total energy consumption per bit Etotal of 5.6 aJ, which is six orders of magnitude lower than traditional methods (reaching the aJ level). Through transient magnetization dynamics simulation and energy evolution analysis, the study reveals the physical mechanism of polarity reversal of radial magnetic vortices in this bicomponent multiferroic heterostructure: the energy competition in the bimaterial system driven by strain leads to the reconfiguration of magnetic moments, achieving efficient and ultra-low energy consumption polarity reversal. This scheme provides a new path for on-chip integration of magnetic vortex memory and opens up a new paradigm for the design of non-current-driven “electric write” magnetic storage devices, which has significant application value in the field of low-power spintronics.
  • [1]

    Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiaville A, Ono T 2007 Nature materials 6 270

    [2]

    Dong D N, Cai L, Li C, Liu B J, Li C, Liu J H 2018 Acta Phys. Sin. 67 228502 (in Chinese) [董丹娜,蔡理, 李成, 刘保军, 李闯, 刘嘉豪 2018 物理学报 67 228502]

    [3]

    Hrabec A, Porter N, Wells A, Benitez M, Burnell G, McVitie S, McGrouther D, Moore T, MarrowsC 2014 Physical Review B 90 020402

    [4]

    Tomasello R, Carpentieri M, Finocchio G 2014 Journal of Applied Physics 115 17 C 730

    [5]

    Siracusano G, Tomasello R, Giordano A, Puliafito V, Azzerboni B, Ozatay O, Carpentieri M, Finocchio G 2016 Phys. Rev. Lett. 117 087204

    [6]

    Verba R, Navas D, Hierro-Rodriguez A, Bunyaev S, Ivanov B, Guslienko K, Kakazei G 2018 Physical Review Applied 10 031002

    [7]

    Bhattacharjee P, Mondal S, Saha S, Barman S 2025 Journal of Physics: Condensed Matter 37 133001

    [8]

    Karakas V, Gokce A, Habiboglu A T, Arpaci S, Ozbozduman K, Cinar I, Yanik C, Tomasello R, Tacchi S, Siracusano G 2018 Scientific reports 8 7180

    [9]

    Li C, Cai L, Wang S, Yang X, Cui H, Wei B, Dong D, Li C, Liu J, Liu B 2018 IEEE Transactions on Magnetics 54 1

    [10]

    Wang Y, Wang L, Xia J, Lai Z, Tian G, Zhang X, Hou Z, Gao X, Mi W, Feng C, et al. 2020 Nature communications 11 3577

    [11]

    Schoenherr P, Manz S, Kuerten L, Shapovalov K, Iyama A, Kimura T, Fiebig M, Meier D 2020 npj Quantum Materials 5 86

    [12]

    Geirhos K, Gross B, Szigeti B G, Mehlin A, Philipp S, White J S, Cubitt R, Widmann S, Ghara S, Lunkenheimer P, et al. 2020 npj Quantum Materials 5 44

    [13]

    Li C, Fang L, Yang X, Xu N, Liu B, Wei B, Zhou E, Yang B 2019 Journal of Physics D: Applied Physics 53 015001

    [14]

    Ma Y, Zhao R, Song C, Jin C, Wang J, Wei Y, Huang Y, Wang J, Wang J, Liu Q 2019 Journal of Magnetism and Magnetic Materials 491 165544

    [15]

    Dong D, Cai L, Li C, Liu B, Li C, Liu J 2019 Journal of Physics D: Applied Physics 52 295001

    [16]

    Fujita R, Gurung G, Mawass M A, Smekhova A, Kronast F, Toh A K J, Soumyanarayanan A, Ho P, Singh A, Heppell E, et al. 2024 Advanced Functional Materials 34 2400552

    [17]

    Zhu M, Hu H, Cui S, Li Y, Zhou X, Qiu Y, Guo R, Wu G, Yu G, Zhou H 2021 Applied Physics Letters 118 262412

    [18]

    Hu H, Yu G, Li Y, Qiu Y, Zhu H, Zhu M, Zhou H 2022 Micromachines 13 1056

    [19]

    Sanchez-Manzano D, Orfila G, Sander A, Marcano L, Gallego F, Mawass M A, Grilli F, Arora A, Peralta A, Cuellar F A, et al. 2024 ACS Applied Materials & Interfaces 16 19681

    [20]

    Shimon G, Adeyeye A, Ross C 2012 Applied Physics Letters 101 083112

    [21]

    Xia Y, Yang X, Dou S, Cui H, Wei B, Liang B, Yan X 2024 AIP Advances 14 045239

    [22]

    Biswas A K, Bandyopadhyay S, Atulasimha J 2014 Applied Physics Letters 105 072408

    [23]

    Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, Van Waeyenberge B 2014 AIP advances 4 107133

    [24]

    Landau L, Lifshitz E, et al. 1935 Phys. Z. Sowjetunion 8 101

    [25]

    Gilbert T L 1955 Phys. Rev. 100 1243

    [26]

    Zhang S, Wang W, Burn D, Peng H, Berger H, Bauer A, Pfleiderer C, Van Der Laan G, Hesjedal T 2018 Nature communications 9 2115

    [27]

    Cui H, Cai L, Yang X, Wang S, Zhang M, Li C, Feng C 2018 Applied Physics Letters 112

    [28]

    Cui J, Hockel J L, Nordeen P K, Pisani D M, Liang C y, Carman G P, Lynch C S 2013 Applied Physics Letters 103 232905

    [29]

    Cui J, Liang C Y, Paisley E A, Sepulveda A, Ihlefeld J F, Carman G P, Lynch C S 2015 Applied Physics Letters 107 092903

    [30]

    Bandyopadhyay S 2024 IEEE Transactions on Magnetics 60 1

    [31]

    Nagaosa N, Tokura Y 2013 Nature nanotechnology 8 899

    [32]

    Dou S, Yang X, Yuan J, Xia Y, Bai X, Cui H, Wei B 2023 IEEE Magnetics Letters 14 1

    [33]

    Ma Y, Zhao R, Song C, Jin C, Wang J, Wei Y, Huang Y, Wang J, Wang J, Liu Q 2019 Journal of Magnetism and Magnetic Materials 491 165544a

  • [1] 夏永顺, 杨晓阔, 豆树清, 崔焕卿, 危波, 梁卜嘉, 闫旭. 基于磁性隧道结和双组分多铁纳磁体的超低功耗磁弹模数转换器. 物理学报, doi: 10.7498/aps.73.20240129
    [2] 宋凯欣, 闵书刚, 高俊奇, 张双捷, 毛智能, 沈莹, 储昭强. 磁电机械天线的阻抗特性分析. 物理学报, doi: 10.7498/aps.71.20220591
    [3] 徐永虎, 邓小清, 孙琳, 范志强, 张振华. 边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应. 物理学报, doi: 10.7498/aps.71.20211748
    [4] 王娅巽, 郭迪, 李建高, 张东波. 低维材料物性的非均匀应变调控. 物理学报, doi: 10.7498/aps.71.20220085
    [5] 袁佳卉, 杨晓阔, 张斌, 陈亚博, 钟军, 危波, 宋明旭, 崔焕卿. 混合时钟驱动的自旋神经元器件激活特性和计算性能. 物理学报, doi: 10.7498/aps.70.20210611
    [6] 安明, 董帅. 电荷媒介的磁电耦合: 从铁电场效应到电荷序铁电体. 物理学报, doi: 10.7498/aps.69.20201193
    [7] 刘嘉豪, 杨晓阔, 危波, 李成, 张明亮, 李闯, 董丹娜. 基于倾斜纳磁体翻转倾向性的与(或)逻辑门应力模型. 物理学报, doi: 10.7498/aps.68.20181621
    [8] 申见昕, 尚大山, 孙阳. 基于磁电耦合效应的基本电路元件和非易失性存储器. 物理学报, doi: 10.7498/aps.67.20180712
    [9] 董丹娜, 蔡理, 李成, 刘保军, 李闯, 刘嘉豪. 界面Dzyaloshinskii-Moriya相互作用下辐射状磁涡旋形成机制. 物理学报, doi: 10.7498/aps.67.20181392
    [10] 黄颖妆, 齐岩, 杜安, 刘佳宏, 艾传韡, 戴海燕, 张小丽, 黄雨嫣. 复合多铁链的磁电耦合行为与外场调控. 物理学报, doi: 10.7498/aps.67.20181561
    [11] 张耿鸿, 朱佳, 姜格蕾, 王彪, 郑跃. 压缩应变载荷下氮化镓隧道结微观压电特性及其巨压电电阻效应. 物理学报, doi: 10.7498/aps.65.107701
    [12] 王晓媛, 赵丰鹏, 王杰, 闫亚宾. 金属有机框架材料力学、电学及其应变调控特性的第一原理研究. 物理学报, doi: 10.7498/aps.65.178105
    [13] 徐新河, 刘鹰, 甘月红, 刘文苗. 磁电耦合超材料本构矩阵获取方法的研究. 物理学报, doi: 10.7498/aps.64.044101
    [14] 袁昌来, 周秀娟, 轩敏杰, 许积文, 杨云, 刘心宇. K0.5Na0.5NbO3-LiSbO3-BiFeO3/CuFe2O4复合陶瓷的制备与磁电性能研究. 物理学报, doi: 10.7498/aps.62.047501
    [15] 杨晓阔, 蔡理, 王久洪, 黄宏图, 赵晓辉, 李政操, 刘保军. 磁性量子元胞自动机功能阵列的实验研究. 物理学报, doi: 10.7498/aps.61.047502
    [16] 周文亮, 夏坤, 许达, 仲崇贵, 董正超, 方靖淮. 应变作用下量子顺电材料EuTiO3的磁电性质. 物理学报, doi: 10.7498/aps.61.097702
    [17] 顾建军, 刘力虎, 岂云开, 徐芹, 张惠敏, 孙会元. 复合薄膜NiFe2 O4-BiFeO3 中的磁电耦合. 物理学报, doi: 10.7498/aps.60.067701
    [18] 仲崇贵, 蒋青, 方靖淮, 葛存旺. 单相ABO3型多铁材料的磁电耦合及磁电性质研究. 物理学报, doi: 10.7498/aps.58.3491
    [19] 高剑森, 张 宁. Fe掺杂量对双层复合结构BaTi1-zFezO3+δ-Tb1-xDyxFe2-y中磁电耦合的影响. 物理学报, doi: 10.7498/aps.57.7872
    [20] 杨 颖, 李启昌, 刘俊明, 刘治国. 铁电磁体Pb(Fe1/2Nb1/2)O3的磁电性能研究. 物理学报, doi: 10.7498/aps.54.4213
计量
  • 文章访问数:  34
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-19

/

返回文章
返回