搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

界面Dzyaloshinskii-Moriya相互作用下辐射状磁涡旋形成机制

董丹娜 蔡理 李成 刘保军 李闯 刘嘉豪

引用本文:
Citation:

界面Dzyaloshinskii-Moriya相互作用下辐射状磁涡旋形成机制

董丹娜, 蔡理, 李成, 刘保军, 李闯, 刘嘉豪

Mechanism of magnetic radial vortex under effect of interfacial DzyaloshinskiiMoriya interaction

Dong Dan-Na, Cai Li, Li Cheng, Liu Bao-Jun, Li Chuang, Liu Jia-Hao
PDF
导出引用
  • 辐射状磁涡旋结构是一种稳定的拓扑磁结构,因其具有热稳定性高、驱动电流小等特点,成为当前继斯格明子之后又一新兴的研究热点.本文利用微磁学模拟方法研究了在界面Dzyaloshinskii-Moriya相互作用(IDMI)下辐射状磁涡旋形成机制.结果表明:纳米盘直径越小,能稳定形成辐射状磁涡旋的IDMI强度范围就越大,当圆盘厚度增加一个数量级时,虽然可以稳定形成辐射状磁涡旋,但IDMI强度取值范围会随之变小.通过对不同磁矩初始态下辐射状磁涡旋的形成过程中磁矩、斯格明子数及各项能量变化的研究发现,环形涡旋和单畴均可作为辐射状磁涡旋形成的初始状态,但单畴初始态的形成时间比环形涡旋初始态的形成时间更长,其能量衰减时间比以环形涡旋为初始态的衰减时间更短.这表明形成辐射状磁涡旋极性比形成辐射旋性需要更长时间,且能量变化主要与涡旋核的生成及面内辐射状磁矩有关,而与涡旋核在盘中的位置无关.研究结果揭示了辐射状磁涡旋的形成机制,为基于辐射状磁涡旋的具体应用提供了理论依据.
    Recently, the topological magnetic textures, such as magnetic vortex, skyrmion, meron, have attracted wide attention. Siracusano et al. [Siracusano G, Tomasello R, Giordano A, et al. 2016 Phys. Rev. Lett. 117 087204] found a new topological magnetic configuration, named a magnetic radial vortex. The magnetic radial vortex state is a stable topological magnetic texture. The magnetization in the center of the magnetic radial vortex, namely the radial vortex polarity, points upward or downward. The in-plane component of the magnetization, namely, the radial vortex radial chirality, orientates radially outward or inward. The magnetic radial vortex has become another emerging research hotspot after skyrmion, which can be attributed to its better thermal stability and lower driven current density. In this paper, we investigate the nucleation mechanism of magnetic radial vortex under the effect of interfacial Dzyaloshinskii-Moriya interaction (IDMI) by using the micromagnetic simulation. The results indicate that the smaller the diameter of the soft magnetic nanodisk, the more easily the wider range of the intensity of IDMI is created. When the thickness of the disk is increased by one order of magnitude, the magnetic radial vortex can be formed stably. Therefore, the intensity of IDMI can be further reduced by appropriately choosing the disc size. The magnetic radial vortex can be nucleated no matter whether the initial magnetization configuration is circular vortex or uniform state. However, if the initial state is uniform, the magnetization component along the z-axis direction is prerequisite. In the magnetic radial vortex nucleation process, the nucleation time of the uniform state is significantly longer than that of circular vortex, and the energy variation time of circular vortex is longer than that of the uniform state. In the process of the formation of magnetic radial vortex, the variation of magnetic moment, skyrmion number and energy are determined by different initial magnetization configurations. This work contributes to the understanding of the mechanism of magnetic radial vortex and provides a theoretical guideline for choosing reasonable disc size and IDMI strength. Moreover, the above-mentioned conclusions contribute to the practical applications of magnetic radial vortex in spin electric devices.
      Corresponding author: Cai Li, qianglicai@163.com;liubaojun102519@sina.com ; Liu Bao-Jun, qianglicai@163.com;liubaojun102519@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11405270) and the Natural Science for Basic Research Program of Shaanxi Province, China (Grant No. 2017JM6072).
    [1]

    Cowburn R P, Koltsov D K, Adeyeye A O, Welland M E, Tricker D M 1999 Phys. Rev. Lett. 83 1042

    [2]

    de Alfaro V, Fubini S, Furlan G 1976 Phys. Lett. B 65 163

    [3]

    Skyrme T H R 1962 Nucl. Phys. 31 556

    [4]

    Phatak C, Petford-Long A K, Heinonen O 2012 Phys. Rev. Lett. 108 067205

    [5]

    Li C, Cai L, Liu B J, Yang X K, Cui H Q, Wang S, Wei B 2018 AIP Adv. 8 055314

    [6]

    Hrabec A, Porter N A, Wells A, Benitez M J, Burnell G, McVitie S, McGrouther D, Moore T A, Marrows C H 2014 Phys. Rev. B 90 020402

    [7]

    Tomasello R, Carpentieri M, Finocchio G 2014 J. Appl Phys. 115 17C730

    [8]

    Eason K, Feng K J, Wei Kho Z, Hin Sim C, Tran M, Cheng H J, Sabino M, Kun He S 2014 J. Appl. Phys. 115 17C902

    [9]

    Zhang Z D 2015 Acta Phys. Sin. 64 067503 (in Chinese) [张志东 2015 物理学报 64 067503]

    [10]

    Siracusano G, Tomasello R, Giordano A, Puliafito V, Azzerboni B, Ozatay O, Carpentieri M, Finocchio G 2016 Phys. Rev. Lett. 117 087204

    [11]

    Hellman F, Hoffmann A, Tserkovnyak Y, Beach G, Fullerton E E, Leighton C, MacDonald A H, Ralph D C, Arena D A, Drr H A, Fischer P, Grollier J, Heremans J P, Jungwirth T, Kimelet A V, Koopmans B, Krivorotov I N, May S J, Petford-Long A K, Rondinelli J M, Samarth N, Schuller I K, Slavin A N, Stiles M D, Tchernyshyov O, Thiaville A, Zink B L 2017 Rev. Mod. Phys. 89 025006

    [12]

    Cui H Q, Cai L, Yang X K, Wang S, Zhang M L, Li C, Feng C W 2018 Appl. Phys. Lett. 112 092404

    [13]

    Agramunt-Puig S, Del-Valle N, Navau C, Sanchez A 2014 Appl. Phys. Lett. 104 012407

    [14]

    Jenkins A S, Grimaldi E, Bortolotti P, Lebrun R, Kubota H, Yakushiji K, Fukushima A, de Loubens G, Klein O, Yuasa S, Cros V 2014 Appl. Phys. Lett. 105 172403

    [15]

    Cambel V, Karapetrov G 2011 Phys. Rev. B 84 014424

    [16]

    Karakas V, Gokce A, Habiboglu A T, Arpaci S, Ozbozduman K, Cinar I, Yanik C, Tomasello R, Tacchi S, Siracusano G, Carpentieri M, Finocchio G, Hauet T, Ozatay O 2018 Sci. Rep. UK 8 7180

    [17]

    Li C, Cai L, Wang S, Yang X K, Cui H Q, Wei B, Dong D N, Li C, Liu J H, Liu B J 2018 IEEE Trans. Magn. 54 3400806

    [18]

    Li C, Cai L, Yang X K, Cui H Q, Wang S, Wei B, Dong D N, Li C, Liu J H, Liu B J 2018 IEEE Magn. Lett. 9 4102204

    [19]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnár S V, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [20]

    Joshi V K 2016 Eng. Sci. Technol. Int. J. 19 1503

    [21]

    Li C, Cai L, Wang S, Liu B J, Cui H Q, Wei B 2017 Acta Phys. Sin. 66 208501 (in Chinese) [李成, 蔡理, 王森, 刘保军, 崔焕卿, 危波 2017 物理学报 66 208501]

    [22]

    Puliafito V, Torres L, Ozatay O, Hauet T, Azzerboni B, Finocchio G 2014 J. Appl. Phys. 115 17D139

    [23]

    Vaňatka, Urbánek M, Jíra R, Flajšman L, Dhankhar Me, Im M Y, Michalička J, Uhlí V, Šikola T 2017 AIP Adv. 7 105103

    [24]

    Tacchi S, Troncoso R E, Ahlberg M, Gubbiotti G, Madami M, Akerman J, Landeros P 2017 Phys. Rev. Lett. 118 147201

    [25]

    Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, van Waeyenberge B 2014 AIP Adv. 4 107133

    [26]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899

    [27]

    Cubukcu M, Sampaio J, Bouzehouane K, Apalkov D, Khvalkovskiy A V, Cros V, Reyren N 2016 Phys. Rev. B 93 020401

  • [1]

    Cowburn R P, Koltsov D K, Adeyeye A O, Welland M E, Tricker D M 1999 Phys. Rev. Lett. 83 1042

    [2]

    de Alfaro V, Fubini S, Furlan G 1976 Phys. Lett. B 65 163

    [3]

    Skyrme T H R 1962 Nucl. Phys. 31 556

    [4]

    Phatak C, Petford-Long A K, Heinonen O 2012 Phys. Rev. Lett. 108 067205

    [5]

    Li C, Cai L, Liu B J, Yang X K, Cui H Q, Wang S, Wei B 2018 AIP Adv. 8 055314

    [6]

    Hrabec A, Porter N A, Wells A, Benitez M J, Burnell G, McVitie S, McGrouther D, Moore T A, Marrows C H 2014 Phys. Rev. B 90 020402

    [7]

    Tomasello R, Carpentieri M, Finocchio G 2014 J. Appl Phys. 115 17C730

    [8]

    Eason K, Feng K J, Wei Kho Z, Hin Sim C, Tran M, Cheng H J, Sabino M, Kun He S 2014 J. Appl. Phys. 115 17C902

    [9]

    Zhang Z D 2015 Acta Phys. Sin. 64 067503 (in Chinese) [张志东 2015 物理学报 64 067503]

    [10]

    Siracusano G, Tomasello R, Giordano A, Puliafito V, Azzerboni B, Ozatay O, Carpentieri M, Finocchio G 2016 Phys. Rev. Lett. 117 087204

    [11]

    Hellman F, Hoffmann A, Tserkovnyak Y, Beach G, Fullerton E E, Leighton C, MacDonald A H, Ralph D C, Arena D A, Drr H A, Fischer P, Grollier J, Heremans J P, Jungwirth T, Kimelet A V, Koopmans B, Krivorotov I N, May S J, Petford-Long A K, Rondinelli J M, Samarth N, Schuller I K, Slavin A N, Stiles M D, Tchernyshyov O, Thiaville A, Zink B L 2017 Rev. Mod. Phys. 89 025006

    [12]

    Cui H Q, Cai L, Yang X K, Wang S, Zhang M L, Li C, Feng C W 2018 Appl. Phys. Lett. 112 092404

    [13]

    Agramunt-Puig S, Del-Valle N, Navau C, Sanchez A 2014 Appl. Phys. Lett. 104 012407

    [14]

    Jenkins A S, Grimaldi E, Bortolotti P, Lebrun R, Kubota H, Yakushiji K, Fukushima A, de Loubens G, Klein O, Yuasa S, Cros V 2014 Appl. Phys. Lett. 105 172403

    [15]

    Cambel V, Karapetrov G 2011 Phys. Rev. B 84 014424

    [16]

    Karakas V, Gokce A, Habiboglu A T, Arpaci S, Ozbozduman K, Cinar I, Yanik C, Tomasello R, Tacchi S, Siracusano G, Carpentieri M, Finocchio G, Hauet T, Ozatay O 2018 Sci. Rep. UK 8 7180

    [17]

    Li C, Cai L, Wang S, Yang X K, Cui H Q, Wei B, Dong D N, Li C, Liu J H, Liu B J 2018 IEEE Trans. Magn. 54 3400806

    [18]

    Li C, Cai L, Yang X K, Cui H Q, Wang S, Wei B, Dong D N, Li C, Liu J H, Liu B J 2018 IEEE Magn. Lett. 9 4102204

    [19]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnár S V, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [20]

    Joshi V K 2016 Eng. Sci. Technol. Int. J. 19 1503

    [21]

    Li C, Cai L, Wang S, Liu B J, Cui H Q, Wei B 2017 Acta Phys. Sin. 66 208501 (in Chinese) [李成, 蔡理, 王森, 刘保军, 崔焕卿, 危波 2017 物理学报 66 208501]

    [22]

    Puliafito V, Torres L, Ozatay O, Hauet T, Azzerboni B, Finocchio G 2014 J. Appl. Phys. 115 17D139

    [23]

    Vaňatka, Urbánek M, Jíra R, Flajšman L, Dhankhar Me, Im M Y, Michalička J, Uhlí V, Šikola T 2017 AIP Adv. 7 105103

    [24]

    Tacchi S, Troncoso R E, Ahlberg M, Gubbiotti G, Madami M, Akerman J, Landeros P 2017 Phys. Rev. Lett. 118 147201

    [25]

    Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, van Waeyenberge B 2014 AIP Adv. 4 107133

    [26]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899

    [27]

    Cubukcu M, Sampaio J, Bouzehouane K, Apalkov D, Khvalkovskiy A V, Cros V, Reyren N 2016 Phys. Rev. B 93 020401

  • [1] 闫健, 任志伟, 钟智勇. Y3Fe5O12-CoFeB自旋波定向耦合器中的自旋波. 物理学报, 2021, 70(18): 187501. doi: 10.7498/aps.70.20210507
    [2] 马晓萍, 杨宏国, 李昌锋, 刘有继, 朴红光. 切边纳米铁磁盘对中磁涡旋旋性的磁场调控. 物理学报, 2021, 70(10): 107502. doi: 10.7498/aps.70.20201995
    [3] 李栋, 董生智, 李磊, 徐吉元, 陈红升, 李卫. 核((Nd0.7, Ce0.3)2Fe14B)-壳(Nd2Fe14B)型磁体反磁化的微磁学模拟. 物理学报, 2020, 69(14): 147501. doi: 10.7498/aps.69.20200435
    [4] 孔令尧. 磁斯格明子拓扑特性及其动力学微磁学模拟研究进展. 物理学报, 2018, 67(13): 137506. doi: 10.7498/aps.67.20180235
    [5] 徐桂舟, 徐展, 丁贝, 侯志鹏, 王文洪, 徐锋. 磁畴壁手性和磁斯格明子的拓扑性表征及其调控. 物理学报, 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [6] 夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳. 磁斯格明子器件及其应用进展. 物理学报, 2018, 67(13): 137505. doi: 10.7498/aps.67.20180894
    [7] 金晨东, 宋承昆, 王金帅, 王建波, 刘青芳. 磁斯格明子的微磁学研究进展和应用. 物理学报, 2018, 67(13): 137504. doi: 10.7498/aps.67.20180165
    [8] 吕刚, 曹学成, 张红, 秦羽丰, 王林辉, 厉桂华, 高峰, 孙丰伟. 磁涡旋极性翻转的局域能量. 物理学报, 2016, 65(21): 217503. doi: 10.7498/aps.65.217503
    [9] 孙明娟, 刘要稳. 电流调控磁涡旋的极性和旋性. 物理学报, 2015, 64(24): 247505. doi: 10.7498/aps.64.247505
    [10] 孙璐, 火炎, 周超, 梁建辉, 张祥志, 许子健, 王勇, 吴义政. 利用扫描透射X射线显微镜观测磁涡旋结构. 物理学报, 2015, 64(19): 197502. doi: 10.7498/aps.64.197502
    [11] 张志东. 磁性材料的磁结构、磁畴结构和拓扑磁结构. 物理学报, 2015, 64(6): 067503. doi: 10.7498/aps.64.067503
    [12] 彭懿, 赵国平, 吴绍全, 斯文静, 万秀琳. 不同易轴取向下对Nd2Fe14B/Fe65Co35磁性双层膜的微磁学模拟. 物理学报, 2014, 63(16): 167505. doi: 10.7498/aps.63.167505
    [13] 夏静, 张溪超, 赵国平. 易轴取向对Nd2Fe14B/α-Fe双层膜退磁过程影响的微磁学分析. 物理学报, 2013, 62(22): 227502. doi: 10.7498/aps.62.227502
    [14] 范喆, 马晓萍, 李尚赫, 沈帝虎, 朴红光, 金东炫. 消磁场对纳米铁磁线磁畴壁动力学行为的影响. 物理学报, 2012, 61(10): 107502. doi: 10.7498/aps.61.107502
    [15] 陆海鹏, 韩满贵, 邓龙江, 梁迪飞, 欧雨. Co纳米线磁矩反转动态过程的有限元微磁学模拟. 物理学报, 2010, 59(3): 2090-2096. doi: 10.7498/aps.59.2090
    [16] 宋三元, 郭光华, 张光富, 宋文斌. 矩形磁性纳米点动力学反磁化过程的微磁学研究. 物理学报, 2009, 58(8): 5757-5762. doi: 10.7498/aps.58.5757
    [17] 蔡 卓, 陆文彬, 刘拥军. 交错Dzyaloshinskii-Moriya相互作用对反铁磁Heisenberg链纠缠的影响. 物理学报, 2008, 57(11): 7267-7273. doi: 10.7498/aps.57.7267
    [18] 杨秀会. W(110)基底上的铁纳米岛初始自发磁化态的微磁学模拟. 物理学报, 2008, 57(11): 7279-7286. doi: 10.7498/aps.57.7279
    [19] 阴津华, C. H. Hee, 潘礼庆. 反铁磁耦合记录介质的一级翻转曲线. 物理学报, 2008, 57(11): 7287-7291. doi: 10.7498/aps.57.7287
    [20] 肖君军, 孙超, 薛德胜, 李发伸. 铁纳米线磁行为的微磁学模拟与研究. 物理学报, 2001, 50(8): 1605-1609. doi: 10.7498/aps.50.1605
计量
  • 文章访问数:  2748
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-20
  • 修回日期:  2018-09-03
  • 刊出日期:  2019-11-20

界面Dzyaloshinskii-Moriya相互作用下辐射状磁涡旋形成机制

    基金项目: 国家自然科学基金(批准号:11405270)和陕西省自然科学基础研究计划(批准号:2017JM6072)资助的课题.

摘要: 辐射状磁涡旋结构是一种稳定的拓扑磁结构,因其具有热稳定性高、驱动电流小等特点,成为当前继斯格明子之后又一新兴的研究热点.本文利用微磁学模拟方法研究了在界面Dzyaloshinskii-Moriya相互作用(IDMI)下辐射状磁涡旋形成机制.结果表明:纳米盘直径越小,能稳定形成辐射状磁涡旋的IDMI强度范围就越大,当圆盘厚度增加一个数量级时,虽然可以稳定形成辐射状磁涡旋,但IDMI强度取值范围会随之变小.通过对不同磁矩初始态下辐射状磁涡旋的形成过程中磁矩、斯格明子数及各项能量变化的研究发现,环形涡旋和单畴均可作为辐射状磁涡旋形成的初始状态,但单畴初始态的形成时间比环形涡旋初始态的形成时间更长,其能量衰减时间比以环形涡旋为初始态的衰减时间更短.这表明形成辐射状磁涡旋极性比形成辐射旋性需要更长时间,且能量变化主要与涡旋核的生成及面内辐射状磁矩有关,而与涡旋核在盘中的位置无关.研究结果揭示了辐射状磁涡旋的形成机制,为基于辐射状磁涡旋的具体应用提供了理论依据.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回