搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

易轴取向对Nd2Fe14B/α-Fe双层膜退磁过程影响的微磁学分析

夏静 张溪超 赵国平

引用本文:
Citation:

易轴取向对Nd2Fe14B/α-Fe双层膜退磁过程影响的微磁学分析

夏静, 张溪超, 赵国平

Micromagnetic analysis of the effect of the easy axis orientation on demagnetization process in Nd2Fe14B/α-Fe bilayers

Xia Jing, Zhang Xi-Chao, Zhao Guo-Ping
PDF
导出引用
  • 运用一维和三维微磁学模拟探究了易轴与外场存在偏角β情况下Nd2Fe14B/α-Fe 双层膜的磁矩反转过程, 计算了磁矩反转过程中磁滞回线和磁能积, 并与实验结果进行了对比. 计算结果表明, 在膜面内的易轴偏角β严重影响磁矩反转过程. 当β≠0°时, 磁矩反转过程中无明显成核现象, 随着易轴偏角β的增大, 剩磁显著减小, 磁滞回线方形度变差, 导致磁能积急剧减小. 对于Nd2Fe14B(10 nm)/α-Fe(8 nm)双层膜, β=10°时, 最大磁能积下降30.3%. 在磁矩反转过程中, 总能量最大时对应的外磁场能随易轴偏角的增大而减小, 交换作用能先增大后减小, 磁晶各向异性能则随着易轴偏角的增大而增大. 软磁相厚度越大, 双层膜的磁能积受易轴偏角影响越大. 在膜面外的易轴偏角对磁矩反转过程也有类似的影响.
    The hysteresis loops and energy products in the magnetization reversal process are investigated by one-and three-dimensional micromagnetic methods for a Nd2Fe14B/α-Fe bilayer system with an angle β between the applied field and the easy axis, and the results are compared with available experimental results. The calculation shows that the deviation of the easy axis affects the magnetization reversal process seriously. When β≠0°, there is no obvious nucleation in the magnetization reversal process. The remanence decreases as β decreases, and the squareness of the hysteresis loops is weakened, leading to the sharp decrease of energy product. For Nd2Fe14B(10 nm)/α-Fe(8 nm), the energy product decreases by 30.3% when β=10°. In the magnetization reversal process, as the total energy reaches the maxium, Zeeman energy decreases with increasing of β, and the exchange energy first increases and then decreases slightly, and the anisotropic energy increases with the increasing of β. The deviation of easy axis has a greater influence on the energy product of the bilayer system with larger soft thickness. The out-of-plane deviation of easy axis has a similar effect.
    • 基金项目: 国家自然科学基金(批准号: 11074179)和四川省高等学校科研创新团队建设计划(批准号: 12TD008)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11074179) and the Construction Plan for Scientific Research Innovation Teams of Institution of Higher Education of Sichuan Province, China (Grant No. 12TD008).
    [1]

    Kneller E F, Hawig R 1991 IEEE Trans. Magn. 27 3588

    [2]

    Skomski R, Coey J M D 1993 Phys. Rev. B 48 15812

    [3]

    Schrefl T, Kronmller H, Fidler J 1993 J. Magn. Magn. Mater. 127 L273

    [4]

    Asti G, Ghidini M, Pellicelli R, Pernechele C, Solzi M, Albertini F, Casoli F, Fabbrici S, Pareti L 2006 Phys. Rev. B 73 094406

    [5]

    Zhao G P, Deng Y, Zhang H W, Chen L, Feng Y P, Bo N 2010 J. Appl. Phys. 108 093928

    [6]

    Belemuk A M, Chui S T 2011 J. Appl. Phys. 109 093909

    [7]

    Zhao G P, Wang X L 2006 Phys. Rev. B 74 012409

    [8]

    Zhao G P, Zhou G, Zhang H W, Feng Y P, Xian C W, Zhang Q X 2008 Comput. Mater. Sci. 44 117

    [9]

    Schrefl T, Fidler J, Kronmller H 1994 Phys. Rev. B 49 6100

    [10]

    Shindo M, Ishizone M, Sakuma A, Kato H, Miyazaki T 1997 J. Appl. Phys. 81 4444

    [11]

    Chumakov D, Schäfer R, Elefant D, Eckert D, Schultz L, Yan S S, Barnard J A 2002 Phys. Rev. B 66 134409

    [12]

    Guo Z J, Jiang J S, Pearson J E, Bader S D, Liu J P 2002 Appl. Phys. Lett. 81 2029

    [13]

    Jiang J S, Pearson J E, Liu Z Y, Kabius B, Trasobares S, Miller D J, Bader S D, Lee D R, Haskel D, Srajer G, Liu J P 2004 Appl. Phys. Lett. 85 5293

    [14]

    Pogossian S P, Spenato D, Dekadjevi D T, Youssef J B 2006 Phys. Rev. B 73 174414

    [15]

    Ma B, Wang H, Zhao H B, Sun C G, Acharya R, Wang J P 2010 IEEE Magn. Lett. 46 2345

    [16]

    Hou H C, Liao J W, Lin M S, Lin H J, Chang F H, Chen R Z, Chiu C H, Lai C H 2011 J. Appl. Phys. 109 07C104

    [17]

    Liu S, Higgins A, Shin E, Bauser S, Chen C, Lee D, Shen Y, He Y, Huang M Q 2006 IEEE Trans. Magn. 42 2912

    [18]

    Neu V, Häfner K, Patra A K, Schultz L 2006 J. Phys. D 39 5116

    [19]

    Patra A K, Neu V, Fahler S, Groetzschel R, Schultz L 2006 Appl. Phys. Lett. 89 142512

    [20]

    Serrona L K E B, Sugimura A, Adachi N, Okuda T, Ohsato H, Sakamoto I, Nakanishi A, Motokawa M, Ping D H, Hono K 2003 Appl. Phys. Lett. 82 1751

    [21]

    Ping D H, Hono K, Hirosawa S 1998 J. Appl. Phys. 83 7769

    [22]

    Wang Y, Wang R, Xie H L, Bai J M, Wei F L 2013 Chin. Phys. B 22 68506

    [23]

    Li Z B, Shen B G, Niu E, Sun J R 2013 Appl. Phys. Lett. 103 062405

    [24]

    Yan S S, Elkawni M, Li D S, Garmestani H, Liu J P, Weston J L, Zangari G 2003 J. Appl. Phys. 94 4535

    [25]

    Deng Y, Zhao G P, Bo N 2011 Acta Phys. Sin. 60 037502 (in Chinese) [邓娅, 赵国平, 薄鸟 2011 物理学报 60 037502]

    [26]

    Liu J P, Liu Y, Skomski R, Sellmyer D J 1999 IEEE Trans. Magn. 35 3241

    [27]

    Liu W, Zhang Z D, Liu J P, Chen L J, He L L, Liu Y, Sun X K, Sellmyer D J 2002 Adv. Mater. 14 1832

    [28]

    Cui W B, Takahashi Y K, Hono K 2012 Adv. Mater. 24 6530

    [29]

    Zhang J, Takahashi Y K, Gopalan R, Hono K 2005 Appl. Phys. Lett. 86 122509

    [30]

    Liu Y, George T A, Skomski R, Sellmyer D J 2011 Appl. Phys. Lett. 99 172504

    [31]

    Asti G, Solzi M, Ghidini M 2001 J. Magn. Magn. Mater. 226–230 1464

    [32]

    Zhao G P, Deng Y, Zhang H W, Cheng Z H, Ding J 2011 J. Appl. Phys. 109 07D340

    [33]

    Asti G, Solzi M, Ghidini M, Neri F M 2004 Phys. Rev. B 69 174401

    [34]

    Leineweber T, Kronmller H 1997 J. Magn. Magn. Mater. 176 145

    [35]

    Pellicelli R, Solzi M, Neu V, Hägner K, Pernechele C, Ghidini M 2010 Phys. Rev. B 81 184430

    [36]

    Wilson M J, Zhu M, Myers R C, Awschalom D D, Schiffer P, Samarth N 2010 Phys. Rev. B 81 045319

    [37]

    Zhao G P, Chen L, Huang C W, Guo N L, Feng Y P 2010 Solid State Commun. 150 1486

    [38]

    Brown W F 1945 Rev. Mod. Phys. 17 15

    [39]

    Donahue M J, Porter D G 1999 OOMMF User’s Guide version 1.0 (Gaithersburg: National Institute of Standards and Technology) NISTIR 6376

    [40]

    Song S Y, Guo G H, Zhang G F, Song W B 2009 Acta Phys. Sin. 58 5757 (in Chinese) [宋三元, 郭光华, 张光富, 宋文斌 2009 物理学报 58 5757]

    [41]

    Chen R J, Rong C B, Zhang H W, He S L, Zhang S Y, Shen B G 2004 Acta Phys. Sin. 53 4341 (in Chinese) [陈仁杰, 荣传兵, 张宏伟, 贺淑莉, 张绍英, 沈保根 2004 物理学报 53 4341]

  • [1]

    Kneller E F, Hawig R 1991 IEEE Trans. Magn. 27 3588

    [2]

    Skomski R, Coey J M D 1993 Phys. Rev. B 48 15812

    [3]

    Schrefl T, Kronmller H, Fidler J 1993 J. Magn. Magn. Mater. 127 L273

    [4]

    Asti G, Ghidini M, Pellicelli R, Pernechele C, Solzi M, Albertini F, Casoli F, Fabbrici S, Pareti L 2006 Phys. Rev. B 73 094406

    [5]

    Zhao G P, Deng Y, Zhang H W, Chen L, Feng Y P, Bo N 2010 J. Appl. Phys. 108 093928

    [6]

    Belemuk A M, Chui S T 2011 J. Appl. Phys. 109 093909

    [7]

    Zhao G P, Wang X L 2006 Phys. Rev. B 74 012409

    [8]

    Zhao G P, Zhou G, Zhang H W, Feng Y P, Xian C W, Zhang Q X 2008 Comput. Mater. Sci. 44 117

    [9]

    Schrefl T, Fidler J, Kronmller H 1994 Phys. Rev. B 49 6100

    [10]

    Shindo M, Ishizone M, Sakuma A, Kato H, Miyazaki T 1997 J. Appl. Phys. 81 4444

    [11]

    Chumakov D, Schäfer R, Elefant D, Eckert D, Schultz L, Yan S S, Barnard J A 2002 Phys. Rev. B 66 134409

    [12]

    Guo Z J, Jiang J S, Pearson J E, Bader S D, Liu J P 2002 Appl. Phys. Lett. 81 2029

    [13]

    Jiang J S, Pearson J E, Liu Z Y, Kabius B, Trasobares S, Miller D J, Bader S D, Lee D R, Haskel D, Srajer G, Liu J P 2004 Appl. Phys. Lett. 85 5293

    [14]

    Pogossian S P, Spenato D, Dekadjevi D T, Youssef J B 2006 Phys. Rev. B 73 174414

    [15]

    Ma B, Wang H, Zhao H B, Sun C G, Acharya R, Wang J P 2010 IEEE Magn. Lett. 46 2345

    [16]

    Hou H C, Liao J W, Lin M S, Lin H J, Chang F H, Chen R Z, Chiu C H, Lai C H 2011 J. Appl. Phys. 109 07C104

    [17]

    Liu S, Higgins A, Shin E, Bauser S, Chen C, Lee D, Shen Y, He Y, Huang M Q 2006 IEEE Trans. Magn. 42 2912

    [18]

    Neu V, Häfner K, Patra A K, Schultz L 2006 J. Phys. D 39 5116

    [19]

    Patra A K, Neu V, Fahler S, Groetzschel R, Schultz L 2006 Appl. Phys. Lett. 89 142512

    [20]

    Serrona L K E B, Sugimura A, Adachi N, Okuda T, Ohsato H, Sakamoto I, Nakanishi A, Motokawa M, Ping D H, Hono K 2003 Appl. Phys. Lett. 82 1751

    [21]

    Ping D H, Hono K, Hirosawa S 1998 J. Appl. Phys. 83 7769

    [22]

    Wang Y, Wang R, Xie H L, Bai J M, Wei F L 2013 Chin. Phys. B 22 68506

    [23]

    Li Z B, Shen B G, Niu E, Sun J R 2013 Appl. Phys. Lett. 103 062405

    [24]

    Yan S S, Elkawni M, Li D S, Garmestani H, Liu J P, Weston J L, Zangari G 2003 J. Appl. Phys. 94 4535

    [25]

    Deng Y, Zhao G P, Bo N 2011 Acta Phys. Sin. 60 037502 (in Chinese) [邓娅, 赵国平, 薄鸟 2011 物理学报 60 037502]

    [26]

    Liu J P, Liu Y, Skomski R, Sellmyer D J 1999 IEEE Trans. Magn. 35 3241

    [27]

    Liu W, Zhang Z D, Liu J P, Chen L J, He L L, Liu Y, Sun X K, Sellmyer D J 2002 Adv. Mater. 14 1832

    [28]

    Cui W B, Takahashi Y K, Hono K 2012 Adv. Mater. 24 6530

    [29]

    Zhang J, Takahashi Y K, Gopalan R, Hono K 2005 Appl. Phys. Lett. 86 122509

    [30]

    Liu Y, George T A, Skomski R, Sellmyer D J 2011 Appl. Phys. Lett. 99 172504

    [31]

    Asti G, Solzi M, Ghidini M 2001 J. Magn. Magn. Mater. 226–230 1464

    [32]

    Zhao G P, Deng Y, Zhang H W, Cheng Z H, Ding J 2011 J. Appl. Phys. 109 07D340

    [33]

    Asti G, Solzi M, Ghidini M, Neri F M 2004 Phys. Rev. B 69 174401

    [34]

    Leineweber T, Kronmller H 1997 J. Magn. Magn. Mater. 176 145

    [35]

    Pellicelli R, Solzi M, Neu V, Hägner K, Pernechele C, Ghidini M 2010 Phys. Rev. B 81 184430

    [36]

    Wilson M J, Zhu M, Myers R C, Awschalom D D, Schiffer P, Samarth N 2010 Phys. Rev. B 81 045319

    [37]

    Zhao G P, Chen L, Huang C W, Guo N L, Feng Y P 2010 Solid State Commun. 150 1486

    [38]

    Brown W F 1945 Rev. Mod. Phys. 17 15

    [39]

    Donahue M J, Porter D G 1999 OOMMF User’s Guide version 1.0 (Gaithersburg: National Institute of Standards and Technology) NISTIR 6376

    [40]

    Song S Y, Guo G H, Zhang G F, Song W B 2009 Acta Phys. Sin. 58 5757 (in Chinese) [宋三元, 郭光华, 张光富, 宋文斌 2009 物理学报 58 5757]

    [41]

    Chen R J, Rong C B, Zhang H W, He S L, Zhang S Y, Shen B G 2004 Acta Phys. Sin. 53 4341 (in Chinese) [陈仁杰, 荣传兵, 张宏伟, 贺淑莉, 张绍英, 沈保根 2004 物理学报 53 4341]

  • [1] 马晓萍, 杨宏国, 李昌锋, 刘有继, 朴红光. 切边纳米铁磁盘对中磁涡旋旋性的磁场调控. 物理学报, 2021, 70(10): 107502. doi: 10.7498/aps.70.20201995
    [2] 何鑫鑫, 赵倩. 界面原子扩散对SmCo/Fe交换弹簧双层膜磁性能影响的微磁学研究. 物理学报, 2021, 70(19): 197502. doi: 10.7498/aps.70.20210623
    [3] 李栋, 董生智, 李磊, 徐吉元, 陈红升, 李卫. 核((Nd0.7, Ce0.3)2Fe14B)-壳(Nd2Fe14B)型磁体反磁化的微磁学模拟. 物理学报, 2020, 69(14): 147501. doi: 10.7498/aps.69.20200435
    [4] 徐桂舟, 徐展, 丁贝, 侯志鹏, 王文洪, 徐锋. 磁畴壁手性和磁斯格明子的拓扑性表征及其调控. 物理学报, 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [5] 董丹娜, 蔡理, 李成, 刘保军, 李闯, 刘嘉豪. 界面Dzyaloshinskii-Moriya相互作用下辐射状磁涡旋形成机制. 物理学报, 2018, 67(22): 228502. doi: 10.7498/aps.67.20181392
    [6] 金晨东, 宋承昆, 王金帅, 王建波, 刘青芳. 磁斯格明子的微磁学研究进展和应用. 物理学报, 2018, 67(13): 137504. doi: 10.7498/aps.67.20180165
    [7] 吕刚, 曹学成, 张红, 秦羽丰, 王林辉, 厉桂华, 高峰, 孙丰伟. 磁涡旋极性翻转的局域能量. 物理学报, 2016, 65(21): 217503. doi: 10.7498/aps.65.217503
    [8] 孙璐, 火炎, 周超, 梁建辉, 张祥志, 许子健, 王勇, 吴义政. 利用扫描透射X射线显微镜观测磁涡旋结构. 物理学报, 2015, 64(19): 197502. doi: 10.7498/aps.64.197502
    [9] 孙明娟, 刘要稳. 电流调控磁涡旋的极性和旋性. 物理学报, 2015, 64(24): 247505. doi: 10.7498/aps.64.247505
    [10] 彭懿, 赵国平, 吴绍全, 斯文静, 万秀琳. 不同易轴取向下对Nd2Fe14B/Fe65Co35磁性双层膜的微磁学模拟. 物理学报, 2014, 63(16): 167505. doi: 10.7498/aps.63.167505
    [11] 范喆, 马晓萍, 李尚赫, 沈帝虎, 朴红光, 金东炫. 消磁场对纳米铁磁线磁畴壁动力学行为的影响. 物理学报, 2012, 61(10): 107502. doi: 10.7498/aps.61.107502
    [12] 贺平逆, 吕晓丹, 赵成利, 宁建平, 秦尤敏, 苟富均. F原子与SiC(100)表面相互作用的分子动力学模拟. 物理学报, 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [13] 陆海鹏, 韩满贵, 邓龙江, 梁迪飞, 欧雨. Co纳米线磁矩反转动态过程的有限元微磁学模拟. 物理学报, 2010, 59(3): 2090-2096. doi: 10.7498/aps.59.2090
    [14] 马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦. 纳米多晶金属样本构建的分子动力学模拟研究. 物理学报, 2010, 59(7): 4781-4787. doi: 10.7498/aps.59.4781
    [15] 张涛. 光与电子之间能量交换的一个诱因. 物理学报, 2009, 58(1): 234-237. doi: 10.7498/aps.58.234
    [16] 黄时中, 马 堃, 吴长义, 倪秀波. 氦原子1sns组态能量及其相对论修正. 物理学报, 2008, 57(9): 5469-5475. doi: 10.7498/aps.57.5469
    [17] 阴津华, C. H. Hee, 潘礼庆. 反铁磁耦合记录介质的一级翻转曲线. 物理学报, 2008, 57(11): 7287-7291. doi: 10.7498/aps.57.7287
    [18] 杨秀会. W(110)基底上的铁纳米岛初始自发磁化态的微磁学模拟. 物理学报, 2008, 57(11): 7279-7286. doi: 10.7498/aps.57.7279
    [19] 郑瑞伦. 圆柱状量子点量子导线复合系统的激子能量和电子概率分布. 物理学报, 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [20] 张宏伟, 荣传兵, 张绍英, 沈保根. 高性能纳米复合永磁材料的模拟计算研究. 物理学报, 2004, 53(12): 4347-4352. doi: 10.7498/aps.53.4347
计量
  • 文章访问数:  2875
  • PDF下载量:  419
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-21
  • 修回日期:  2013-08-19
  • 刊出日期:  2013-11-05

易轴取向对Nd2Fe14B/α-Fe双层膜退磁过程影响的微磁学分析

  • 1. 四川师范大学物理与电子工程学院, 成都 610068
    基金项目: 国家自然科学基金(批准号: 11074179)和四川省高等学校科研创新团队建设计划(批准号: 12TD008)资助的课题.

摘要: 运用一维和三维微磁学模拟探究了易轴与外场存在偏角β情况下Nd2Fe14B/α-Fe 双层膜的磁矩反转过程, 计算了磁矩反转过程中磁滞回线和磁能积, 并与实验结果进行了对比. 计算结果表明, 在膜面内的易轴偏角β严重影响磁矩反转过程. 当β≠0°时, 磁矩反转过程中无明显成核现象, 随着易轴偏角β的增大, 剩磁显著减小, 磁滞回线方形度变差, 导致磁能积急剧减小. 对于Nd2Fe14B(10 nm)/α-Fe(8 nm)双层膜, β=10°时, 最大磁能积下降30.3%. 在磁矩反转过程中, 总能量最大时对应的外磁场能随易轴偏角的增大而减小, 交换作用能先增大后减小, 磁晶各向异性能则随着易轴偏角的增大而增大. 软磁相厚度越大, 双层膜的磁能积受易轴偏角影响越大. 在膜面外的易轴偏角对磁矩反转过程也有类似的影响.

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回