搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强磁场对不同厚度Fe80Ni20薄膜的微观结构及磁性能的影响

曹永泽 李国建 王强 马永会 王慧敏 赫冀成

引用本文:
Citation:

强磁场对不同厚度Fe80Ni20薄膜的微观结构及磁性能的影响

曹永泽, 李国建, 王强, 马永会, 王慧敏, 赫冀成

Effects of high magnetic field on the microstructure and magnetic properties of Fe80Ni20 thin films with different thickness values

Cao Yong-Ze, Li Guo-Jian, Wang Qiang, Ma Yong-Hui, Wang Hui-Min, He Ji-Cheng
PDF
导出引用
  • 有无6 T强磁场条件下利用分子束气相沉积方法制备了不同厚度的Fe80Ni20薄膜. 研究发现, 薄膜的面内矫顽力随厚度增加而降低且符合Neel理论; 矩形比随厚度的增加先快速增大后缓慢降低; 6 T磁场抑制了颗粒团聚及异常长大, 并降低了薄膜表面的粗糙度, 这使薄膜的矫顽力要小于无磁场作用的薄膜, 矩形比大于无磁场作用的薄膜; 而且薄膜在垂直于基片表面的6 T磁场作用下由0 T下的面内磁各向异性转变为磁各向同性.
    Fe80Ni20 thin films with different thickness values are prepared by the molecular beam vapor deposition technique, respectively, in the cases with applying no magnetic field and with applying a 6 T magnetic field perpendicular to the surface of substrates. Film property studies show that as film thickness value increases, the coercive force in-plane decreases, which is in accordance with Neel theory, and that the squareness ratio first quickly increases, and then slowly decreases. The 6 T magnetic field restrains coalescence and abnormal growth of grains, and reduces surface roughness. Therefore, with 6 T magnetic field applied during the film preparation, the coercive force of thin film is less and the squareness ratio is larger than that with no magnetic field applied. The thin films are anisotropic in-plane with applying no magnetic field, but isotropic with applying a 6 T magnetic field.
    • 基金项目: 国家自然科学基金(批准号: 51101034, 51061130557, 51101032)和中央高校基本科研业务费专项资金 (批准号: N120509001, N120609001)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51101034, 51061130557, 51101032) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. N120509001, N120609001).
    [1]

    Loloee R, Crimp M A 2002 J. Appl. Phys. 92 4541

    [2]

    Romera M, Ranchal R, Ciudad D, Maicas M, Aroca C 2011 J. Appl. Phys. 110 083910

    [3]

    Szmaja W, Balcerski J, Koztowski W, Cichomski M, Grobelny J, Smolny M, Kowalczyk P J 2012 J. Alloys Compd. 521 174

    [4]

    Anjum S, Rafique M S, Khaleeq-ur-Rahaman M, Siraj K, Usman A, Ahsan A, Naseem S, Khan K 2011 J. Cryst. Growth 324 142

    [5]

    Matsushima H, Nohira T, Ito Y 2004 Electrochem. Solid-State Lett. 7 C81

    [6]

    Koza J A, Karnbach F, Uhlemann M, McCord J, Mickel C, Gebert A, Baunack S, Schultz L 2010 Electrochim. Acta 55 819

    [7]

    Nilsen O, Lie M, Foss S, Fjellvag H, Kjekshus A 2004 Appl. Surf. Sci. 227 40

    [8]

    Wang H Y, Mitani S, Motokawa M, Fujimori H 2003 J. Appl. Phys. 93 9145

    [9]

    Zhang L R, Lu H, Liu X, Bai J M, Wei F L 2012 Chin. Phys. B 21 037502

    [10]

    Cao X W 1996 Physics 25 552 (in Chinese) [曹效文 1996 物理 25 552]

    [11]

    Zhang Y H 2009 Physics 38 320 (in Chinese) [张裕恒 2009 物理 38 320]

    [12]

    Wang C J, Wang Q, Wang Y Q, Huang J, He J C 2006 Acta Phys. Sin. 55 648 (in Chinese) [王春江, 王强, 王亚勤, 黄剑, 赫冀成 2006 物理学报 55 648]

    [13]

    Hu F X, Shen B G, Sun J R 2013 Chin. Phys. B 22 037505

    [14]

    Sung M G, Sassa K, Tagawa T, Miyata T, Ogawa H, Doyama M, Yamada S, Asai S 2002 Carbon 40 2013

    [15]

    Garmestani H, Al-Haik M S, Dahmen K, Tannenbaum R, Li D S, Sablin S S, Hussaini M Y 2003 Adv. Mater. 15 1918

    [16]

    Sheikh-Ali A D, Molodov D A, Garmestani H 2003 Appl. Phys. Lett. 82 3005

    [17]

    Li X, Fautrelle Y, Ren Z M 2007 Acta Mater. 55 1377

    [18]

    Ando T, Hirota N, Wada H 2009 Sci. Technol. Adv. Mater. 10 014609

    [19]

    Wang Q, Liu Y, Liu T, Gao P F, Wang K 2012 Appl. Phys. Lett. 101 132406

    [20]

    Wang Q, Lou C S, Liu T, Wei N, Wang C J, He J C 2009 J. Phys. D: Appl. Phys. 42 025001

    [21]

    Zhao A K, Ren Z M, Ren S Y, Cao G H, Ren W L 2009 Acta Phys. Sin. 58 7101 (in Chinese) [赵安昆, 任忠鸣, 任树洋, 操光辉, 任维丽 2009 物理学报 58 7101]

    [22]

    Wang Q, Cao Y Z, Li G J, Wang K, Du J J, He J C 2013 Sci. Adv. Mater. 5 447

    [23]

    Cao Y Z, Wang Q, Li G J, Du J J, Wu C, He J C 2013 J. Magn. Magn. Mater. 332 38

    [24]

    Neel L 1956 J. Phys. Radium 17 250

    [25]

    Qin X Y, Lee J S, Kim J G 1999 J. Appl. Phys. 86 2146

    [26]

    Tabakovic I, Inturi V, Riemer S 2002 J. Electrochem. Soc. 149 C18

    [27]

    Tabakovic I, Riemer S, Vas’ko V, Sapozhnikov V, Kief M 2003 J. Electrochem. Soc. 150 C635

    [28]

    Lloyd J C, Smith R S 1959 J. Appl. Phys. 30 274S

  • [1]

    Loloee R, Crimp M A 2002 J. Appl. Phys. 92 4541

    [2]

    Romera M, Ranchal R, Ciudad D, Maicas M, Aroca C 2011 J. Appl. Phys. 110 083910

    [3]

    Szmaja W, Balcerski J, Koztowski W, Cichomski M, Grobelny J, Smolny M, Kowalczyk P J 2012 J. Alloys Compd. 521 174

    [4]

    Anjum S, Rafique M S, Khaleeq-ur-Rahaman M, Siraj K, Usman A, Ahsan A, Naseem S, Khan K 2011 J. Cryst. Growth 324 142

    [5]

    Matsushima H, Nohira T, Ito Y 2004 Electrochem. Solid-State Lett. 7 C81

    [6]

    Koza J A, Karnbach F, Uhlemann M, McCord J, Mickel C, Gebert A, Baunack S, Schultz L 2010 Electrochim. Acta 55 819

    [7]

    Nilsen O, Lie M, Foss S, Fjellvag H, Kjekshus A 2004 Appl. Surf. Sci. 227 40

    [8]

    Wang H Y, Mitani S, Motokawa M, Fujimori H 2003 J. Appl. Phys. 93 9145

    [9]

    Zhang L R, Lu H, Liu X, Bai J M, Wei F L 2012 Chin. Phys. B 21 037502

    [10]

    Cao X W 1996 Physics 25 552 (in Chinese) [曹效文 1996 物理 25 552]

    [11]

    Zhang Y H 2009 Physics 38 320 (in Chinese) [张裕恒 2009 物理 38 320]

    [12]

    Wang C J, Wang Q, Wang Y Q, Huang J, He J C 2006 Acta Phys. Sin. 55 648 (in Chinese) [王春江, 王强, 王亚勤, 黄剑, 赫冀成 2006 物理学报 55 648]

    [13]

    Hu F X, Shen B G, Sun J R 2013 Chin. Phys. B 22 037505

    [14]

    Sung M G, Sassa K, Tagawa T, Miyata T, Ogawa H, Doyama M, Yamada S, Asai S 2002 Carbon 40 2013

    [15]

    Garmestani H, Al-Haik M S, Dahmen K, Tannenbaum R, Li D S, Sablin S S, Hussaini M Y 2003 Adv. Mater. 15 1918

    [16]

    Sheikh-Ali A D, Molodov D A, Garmestani H 2003 Appl. Phys. Lett. 82 3005

    [17]

    Li X, Fautrelle Y, Ren Z M 2007 Acta Mater. 55 1377

    [18]

    Ando T, Hirota N, Wada H 2009 Sci. Technol. Adv. Mater. 10 014609

    [19]

    Wang Q, Liu Y, Liu T, Gao P F, Wang K 2012 Appl. Phys. Lett. 101 132406

    [20]

    Wang Q, Lou C S, Liu T, Wei N, Wang C J, He J C 2009 J. Phys. D: Appl. Phys. 42 025001

    [21]

    Zhao A K, Ren Z M, Ren S Y, Cao G H, Ren W L 2009 Acta Phys. Sin. 58 7101 (in Chinese) [赵安昆, 任忠鸣, 任树洋, 操光辉, 任维丽 2009 物理学报 58 7101]

    [22]

    Wang Q, Cao Y Z, Li G J, Wang K, Du J J, He J C 2013 Sci. Adv. Mater. 5 447

    [23]

    Cao Y Z, Wang Q, Li G J, Du J J, Wu C, He J C 2013 J. Magn. Magn. Mater. 332 38

    [24]

    Neel L 1956 J. Phys. Radium 17 250

    [25]

    Qin X Y, Lee J S, Kim J G 1999 J. Appl. Phys. 86 2146

    [26]

    Tabakovic I, Inturi V, Riemer S 2002 J. Electrochem. Soc. 149 C18

    [27]

    Tabakovic I, Riemer S, Vas’ko V, Sapozhnikov V, Kief M 2003 J. Electrochem. Soc. 150 C635

    [28]

    Lloyd J C, Smith R S 1959 J. Appl. Phys. 30 274S

  • [1] 陈波, 杨詹詹, 王玉楹, 王寅岗. 退火时间对Fe80Si9B10Cu1非晶合金纳米尺度结构不均匀性和磁性能的影响. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220446
    [2] 李国建, 常玲, 刘诗莹, 李萌萌, 崔伟斌, 王强. 强磁场下Sm-Fe薄膜不同晶态组织演化及磁性能调控. 物理学报, 2018, 67(9): 097501. doi: 10.7498/aps.67.20180212
    [3] 侯育花, 黄有林, 刘仲武, 曾德长. 稀土掺杂对钴铁氧体电子结构和磁性能影响的理论研究. 物理学报, 2015, 64(3): 037501. doi: 10.7498/aps.64.037501
    [4] 曹永泽, 王强, 李国建, 马永会, 隋旭东, 赫冀成. 强磁场对不同厚度Fe-Ni纳米多晶薄膜的生长过程及磁性能的影响. 物理学报, 2015, 64(6): 067502. doi: 10.7498/aps.64.067502
    [5] 李强, 杨合, 薛向欣, 李清伟. 强磁场对金属离子掺杂CaTiO3结构和光学性能的影响. 物理学报, 2014, 63(22): 227803. doi: 10.7498/aps.63.227803
    [6] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [7] 张强, 朱小红, 徐云辉, 肖云军, 高浩濒, 梁大云, 朱基亮, 朱建国, 肖定全. Mn4+掺杂对BiFeO3陶瓷微观结构和电学性能的影响研究. 物理学报, 2012, 61(14): 142301. doi: 10.7498/aps.61.142301
    [8] 门福殿, 王海堂, 何晓刚. 强磁场中Fermi气体的稳定性及顺磁性. 物理学报, 2012, 61(10): 100503. doi: 10.7498/aps.61.100503
    [9] 易勇, 丁志杰, 李恺, 唐永建, 罗江山. Ni4NdB电子结构和磁性能第一性原理研究. 物理学报, 2011, 60(9): 097503. doi: 10.7498/aps.60.097503
    [10] 易勇, 李恺, 丁志杰, 易早, 罗江山, 唐永建. Ni4PrB的电子结构和磁性能研究. 物理学报, 2011, 60(10): 107502. doi: 10.7498/aps.60.107502
    [11] 曾思良, 倪飞飞, 何建锋, 邹士阳, 颜君. 强磁场中氢原子的能级结构. 物理学报, 2011, 60(4): 043201. doi: 10.7498/aps.60.043201
    [12] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [13] 向军, 宋福展, 沈湘黔, 褚艳秋. 一维Ni0.5Zn0.5Fe2O4/SiO2复合纳米结构的制备及其磁性能. 物理学报, 2010, 59(7): 4794-4801. doi: 10.7498/aps.59.4794
    [14] 王春江, 苑轶, 王强, 刘铁, 娄长胜, 赫冀成. 强磁场条件下金属凝固过程中第二相的迁移行为. 物理学报, 2010, 59(5): 3116-3122. doi: 10.7498/aps.59.3116
    [15] 刘涛, 郭朝晖, 李岫梅, 李卫. 微观组织结构对铂钴永磁合金磁性能的影响. 物理学报, 2009, 58(3): 2030-2034. doi: 10.7498/aps.58.2030
    [16] 任树洋, 任忠鸣, 任维丽, 操光辉. 3 T强磁场对真空蒸发Zn薄膜晶体结构的影响. 物理学报, 2009, 58(8): 5567-5571. doi: 10.7498/aps.58.5567
    [17] 丁万昱, 王华林, 苗壮, 张俊计, 柴卫平. 沉积参数对SiNx薄膜结构及阻透性能的影响. 物理学报, 2009, 58(1): 432-437. doi: 10.7498/aps.58.432
    [18] 李岫梅, 刘 涛, 郭朝晖, 朱明刚, 李 卫. 稀土含量对速凝工艺制备(Nd,Dy)-(Fe,Al)-B合金结构和磁性能的影响. 物理学报, 2008, 57(6): 3823-3827. doi: 10.7498/aps.57.3823
    [19] 李 健, 宋功保, 王美丽, 张宝述. Ti1-xCrxO2±δ体系的相关系、晶体结构和磁性能研究. 物理学报, 2007, 56(6): 3379-3387. doi: 10.7498/aps.56.3379
    [20] 成问好, 李卫, 李传健, 潘伟. 烧结Nd-Fe-B磁体的磁性能一致性与其微观结构的关系. 物理学报, 2001, 50(11): 2226-2229. doi: 10.7498/aps.50.2226
计量
  • 文章访问数:  2966
  • PDF下载量:  678
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-18
  • 修回日期:  2013-08-30
  • 刊出日期:  2013-11-05

强磁场对不同厚度Fe80Ni20薄膜的微观结构及磁性能的影响

  • 1. 东北大学, 材料电磁过程研究教育部重点实验室, 沈阳 110819
    基金项目: 国家自然科学基金(批准号: 51101034, 51061130557, 51101032)和中央高校基本科研业务费专项资金 (批准号: N120509001, N120609001)资助的课题.

摘要: 有无6 T强磁场条件下利用分子束气相沉积方法制备了不同厚度的Fe80Ni20薄膜. 研究发现, 薄膜的面内矫顽力随厚度增加而降低且符合Neel理论; 矩形比随厚度的增加先快速增大后缓慢降低; 6 T磁场抑制了颗粒团聚及异常长大, 并降低了薄膜表面的粗糙度, 这使薄膜的矫顽力要小于无磁场作用的薄膜, 矩形比大于无磁场作用的薄膜; 而且薄膜在垂直于基片表面的6 T磁场作用下由0 T下的面内磁各向异性转变为磁各向同性.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回