-
采用溶胶-凝胶法结合静电纺丝技术制备了Ni0.5Zn0.5Fe2O4/SiO2复合纳米纤维.利用热重-差热分析、X射线衍射、场发射扫描电镜、高分辨透射电镜和振动样品磁强计研究了前驱体纤维的热分解及相转化过程以及焙烧温度和SiO2含量对目标纳米纤维的相组成、微观结构、形貌及磁性能的影响.结果表明,在450 ℃焙烧时,立方尖晶石结构已基本形成.随着焙烧温度由450 ℃升高到100
-
关键词:
- 一维纳米结构 /
- Ni-Zn铁氧体/SiO2 /
- 静电纺丝 /
- 磁性能
The Ni0.5Zn0.5Fe2O4/SiO2 composite nanofibers were prepared using sol-gel process combined with electrospinning. The thermal decomposition and phase inversion process of precursor nanofibers and the effects of calcination temperature and SiO2 content on the phase composition, microstructure, morphology and magnetic property of the resulting nanofibers were studied by means of thermogravimetric and differential thermal analysis, X-ray diffraction, field emission scanning electron microscopy, high resolution transmission electron microscopy and vibrating sample magnetometer. The experimental results show that the cubic spinel structure is basically formed when the precursor nanofibers are calcined at 450 ℃ for 2 h. The average grain size of Ni0.5Zn0.5Fe2O4 contained in the composite nanofibers with 10 % SiO2 and their specific saturation magnetization and coercivity increase with increasing calcination temperature. Amorphous SiO2 additive can effectively restrain the growth of Ni0.5Zn0.5Fe2O4 nanocrystals. As a result, with SiO2 content increasing from 0 to 20 % , the average grain size of Ni0.5Zn0.5Fe2O4 in the prepared Ni0.5Zn0.5Fe2O4/SiO2 composite nanofibers calcined at 900 ℃ for 2 h decreases from 81.6 to 13.3 nm, and the specific saturation magnetization of these samples monotonically decreases, whereas the coercivity initially increases and then decreases due to the change of magnetic domain structure from multi-domain to single-domain along with the reduction in grain size. In addition, with the increase of SiO2 content, the diameter of the as-prepared Ni0.5Zn0.5Fe2O4/SiO2 composite nanofibers gradually increases and the surface becomes smooth.[1] Dasgupta S, Das J, Eckert J, Manna I 2006 J. Magn. Magn. Mater. 306 9
[2] Gul I H, Ahmed W, Maqsood A 2008 J. Magn. Magn. Mater. 320 270
[3] Liu Y, Qin T 2007 Chin. Phys. 16 3837
[4] He X H, Song G S, Zhu J H 2005 Mater. Lett. 59 1941
[5] Yang Z H, Gong Z Q, Li H X, Ma Y T, Yang Y F 2006 J. Cent. South Univ. Technol. 13 618
[6] Azadmanjiri J 2008 Mater. Chem. Phys. 109 109
[7] Stefanescu M, Stoia M, Caizer C, Stefanescu O 2009 Mater. Chem. Phys. 113 342
[8] Wu K H, Huang W C, Wang G P, Wu T R 2005 Mater. Res. Bull. 40 1822
[9] Stefanescu M, Caizer C, Stoia M, Stefanescu O 2006 Acta Mater. 54 1248
[10] Wu K H, Chang Y C, Chang T C, Chiu Y S, Wu T R 2004 J. Magn. Magn. Mater. 283 380
[11] He X H, Zhang Q Q, Ling Z Y 2003 Mater. Lett. 57 3031
[12] Han M G, Liang D F, Deng L J 2007 Appl. Phys. Lett. 90 192507
[13] Liu M, Li X, Imrane H, Chen Y J, Goodrich T, Cai Z H, Ziemer K S, Huang J Y, Sun N X 2007 Appl. Phys. Lett. 90 152501
[14] Liu J R, Itoh M, Terada M, Horikawa T, Machida K I 2007 Appl. Phys. Lett. 91 093101
[15] Tian F, Chen J, Zhu J, Wei D 2008 J. Appl. Phys. 103 013901
[16] Yang J B, Xu H, You S X, Zhou X D, Wang C S, Yelon W B, James W J 2006 J. Appl. Phys. 99 08Q507
[17] Li D, McCann J T, Xia Y N 2006 J. Am. Ceram. Soc. 89 1861
[18] Xiang J, Shen X Q, Song F Z, Liu M Q 2009 Chin. Phys. B 18 4960
[19] Stoner E C, Wohlfarth E P 1991 IEEE Trans. Magn. 27 3475
[20] Qing S, Zhang Z J 2004 J. Am. Chem. Soc. 126 6163
[21] Zhang B J, Hua J, Liu M, Xu S C, Feng M, Li H B 2008 J. Chin. Ceram. Soc. 36 292 (in Chinese)[张伯军、华 杰、刘 梅、徐仕翀、冯 明、李海波 2008 硅酸盐学报 36 292]
[22] Zhao L J,Yang H, Cui Y M,Zhao X P, Feng S H 2007 J. Mater. Sci. 42 4110
[23] Vestal C R, Zhang Z J 2003 Nano Lett. 3 1740
-
[1] Dasgupta S, Das J, Eckert J, Manna I 2006 J. Magn. Magn. Mater. 306 9
[2] Gul I H, Ahmed W, Maqsood A 2008 J. Magn. Magn. Mater. 320 270
[3] Liu Y, Qin T 2007 Chin. Phys. 16 3837
[4] He X H, Song G S, Zhu J H 2005 Mater. Lett. 59 1941
[5] Yang Z H, Gong Z Q, Li H X, Ma Y T, Yang Y F 2006 J. Cent. South Univ. Technol. 13 618
[6] Azadmanjiri J 2008 Mater. Chem. Phys. 109 109
[7] Stefanescu M, Stoia M, Caizer C, Stefanescu O 2009 Mater. Chem. Phys. 113 342
[8] Wu K H, Huang W C, Wang G P, Wu T R 2005 Mater. Res. Bull. 40 1822
[9] Stefanescu M, Caizer C, Stoia M, Stefanescu O 2006 Acta Mater. 54 1248
[10] Wu K H, Chang Y C, Chang T C, Chiu Y S, Wu T R 2004 J. Magn. Magn. Mater. 283 380
[11] He X H, Zhang Q Q, Ling Z Y 2003 Mater. Lett. 57 3031
[12] Han M G, Liang D F, Deng L J 2007 Appl. Phys. Lett. 90 192507
[13] Liu M, Li X, Imrane H, Chen Y J, Goodrich T, Cai Z H, Ziemer K S, Huang J Y, Sun N X 2007 Appl. Phys. Lett. 90 152501
[14] Liu J R, Itoh M, Terada M, Horikawa T, Machida K I 2007 Appl. Phys. Lett. 91 093101
[15] Tian F, Chen J, Zhu J, Wei D 2008 J. Appl. Phys. 103 013901
[16] Yang J B, Xu H, You S X, Zhou X D, Wang C S, Yelon W B, James W J 2006 J. Appl. Phys. 99 08Q507
[17] Li D, McCann J T, Xia Y N 2006 J. Am. Ceram. Soc. 89 1861
[18] Xiang J, Shen X Q, Song F Z, Liu M Q 2009 Chin. Phys. B 18 4960
[19] Stoner E C, Wohlfarth E P 1991 IEEE Trans. Magn. 27 3475
[20] Qing S, Zhang Z J 2004 J. Am. Chem. Soc. 126 6163
[21] Zhang B J, Hua J, Liu M, Xu S C, Feng M, Li H B 2008 J. Chin. Ceram. Soc. 36 292 (in Chinese)[张伯军、华 杰、刘 梅、徐仕翀、冯 明、李海波 2008 硅酸盐学报 36 292]
[22] Zhao L J,Yang H, Cui Y M,Zhao X P, Feng S H 2007 J. Mater. Sci. 42 4110
[23] Vestal C R, Zhang Z J 2003 Nano Lett. 3 1740
计量
- 文章访问数: 8332
- PDF下载量: 1222
- 被引次数: 0