搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单壁碳纳米管/聚醚酰亚胺电磁屏蔽薄膜的制备与性能

王天赐 夏乾善 黄信佐 王永正 刘斌 张晋通 黎涛

引用本文:
Citation:

单壁碳纳米管/聚醚酰亚胺电磁屏蔽薄膜的制备与性能

王天赐, 夏乾善, 黄信佐, 王永正, 刘斌, 张晋通, 黎涛

Preparation and properties of single-walled carbon nanotube/polyetherimide electromagnetic shielding film

Wang Tian-Ci, Xia Qian-Shan, Huang Xin-Zuo, Wang Yong-Zheng, Liu Bin, Zhang Jin-Tong, Li Tao
PDF
HTML
导出引用
  • 在实际应用中, 柔性、轻质、高性能是聚合物基电磁屏蔽材料应具备的特点. 目前, 制备兼具优异电导率、电磁屏蔽性能和力学性能的聚合物基电磁屏蔽材料仍然是一个巨大挑战. 因此, 本工作以单壁碳纳米管和聚醚酰亚胺为原料, 通过静电纺丝和真空辅助过滤的方法制备了单壁碳纳米管/聚醚酰亚胺复合薄膜. 通过调控单壁碳纳米管的面密度, 复合薄膜的电导率可以提升至1866 S/cm. 对于电磁屏蔽性能, 单壁碳纳米管/聚醚酰亚胺复合薄膜在Ku波段(12—18 GHz)的总电磁屏蔽效能为75.78—81.83 dB, 高于纯单壁碳纳米管薄膜的电磁屏蔽效能(65.19—69.81 dB). 由于聚醚酰亚胺纤维和单壁碳纳米管之间形成了界面, 在一定的单壁碳纳米管面密度范围内, 界面越多, 消耗的电磁波能量越多. 对于力学性能, 单壁碳纳米管/聚醚酰亚胺薄膜的最大拉伸强度和断裂伸长率分别为28.52 MPa和7.91%, 是单壁碳纳米管薄膜的1.13倍和1.5倍, 随着单壁碳纳米管面密度的增大, 单壁碳纳米管之间的相互作用以及聚醚酰亚胺纤维和单壁碳纳米管在界面处的相互作用对复合薄膜的力学性能起到了一定的增强作用. 单壁碳纳米管/聚醚酰亚胺复合薄膜作为一种优异的聚合物基电磁屏蔽复合材料, 可用于如精密电子仪器的防护和可穿戴电子设备等领域.
    In practical applications, flexibility, lightweight, and high performance are the characteristics that polymer-based electromagnetic shielding materials should have. At present, it is still a great challenge to prepare polymer-based electromagnetic shielding materials with excellent conductivity, electromagnetic shielding properties, and mechanical properties. Therefore, in this work, single-walled carbon nanotubes/polyetherimide composite films are prepared by electrostatic spinning and vacuum-assisted filtration through using single-walled carbon nanotubes and polyetherimide as raw materials. By regulating the surface density of single-walled carbon nanotubes, the conductivity of the composite film can be enhanced to 1866 S/cm. For the electromagnetic shielding performance, the total electromagnetic shielding effectiveness of single-walled carbon nanotubes/polyetherimide composite film in Ku band (12–18 GHz) is in a range of 75.78–81.83 dB, which is higher than that of pure single-walled carbon nanotube film (65.19–69.81 dB). This is attributed to the formation of interfaces between the polyetherimide fibers and the single-walled carbon nanotubes, with more interfaces consuming more electromagnetic wave energy for a given range of single-walled carbon nanotube surface densities. For the mechanical properties, the maximum tensile strength and elongation at the break of the single-walled carbon nanotube/polyetherimide film are 1.13 and 1.5 times higher than those of the single-walled carbon nanotube film, with the values of 28.52 MPa and 7.91%, respectively. As the surface density of single-walled carbon nanotubes increases, the interaction between single-walled carbon nanotubes as well as the interaction between polyetherimide fibers and single-walled carbon nanotubes at the interface plays a role in enhancing the mechanical properties of the composite films. The single-walled carbon nanotube/polyetherimide composite films, as an excellent polymer-based electromagnetic shielding composite material, can be used in fields such as the protection of precision electronic instruments and wearable electronic devices.
      通信作者: 夏乾善, xiaqianshan@sina.com ; 黄信佐, xz150638@163.com
    • 基金项目: 中国博士后科学基金(批准号: 2021M701019)、黑龙江省博士后资助项目(批准号: LBH-Z20069)和黑龙江省高校基础研究基金(批准号: 2022-KYYWF-0152)资助的课题.
      Corresponding author: Xia Qian-Shan, xiaqianshan@sina.com ; Huang Xin-Zuo, xz150638@163.com
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2021M701019), the Heilongjiang Postdoctoral Financial Assistance, China (Grant No. LBH-Z20069), and the Fundamental Research Foundation for Universities of Heilongjiang Province, China (Grant No. 2022-KYYWF-0152).
    [1]

    Qi Q, Ma L, Zhao B, Wang S, Liu X B, Lei Y, Park C B 2020 ACS Appl. Mater. Interfaces 12 36568Google Scholar

    [2]

    Promlok D, Wichaita W, Phongtamrug S, Kaewsaneha C, Sreearunothai P, Suteewong T, Tangboriboonrat P 2024 Prog. Org. Coat. 186 108002Google Scholar

    [3]

    Kulkarni G, Kandesar P, Velhal N, Phadtare V, Jatratkar A, Shinde S K, Kim D-Y, Puri V 2019 Chem. Eng. J. 355 196Google Scholar

    [4]

    Qiao Y S, Shen L Z, Guo Y, Liu J H, Meng S M 2014 Mater. Techn. 30 182Google Scholar

    [5]

    Lai H R, Li W Y, Xu L, Wang X M, Jiao H, Fan Z Y, Lei Z L, Yuan Y 2020 Chem. Eng. J. 400 125322Google Scholar

    [6]

    Ma M, Shao W Q, Chu Q D, Tao W T, Chen S, Shi Y Q, He H W, Zhu Y L, Wang X 2024 J. Mater. Chem. A 12 1617Google Scholar

    [7]

    Ren W, Zhu H X, Yang Y Q, Chen Y H, Duan H J, Zhao G Z, Liu Y Q 2020 Compos. Part B: Eng. 184 107745Google Scholar

    [8]

    Yang G, Zhou L C, Wang M J, Xiang T T, Pan D, Zhu J Z, Su F M, Ji Y X, Liu C T, Shen C Y 2023 Nano Res. 16 11411Google Scholar

    [9]

    Wei L F, Ma J Z, Ma L, Zhao C X, Xu M L, Qi Q, Zhang W B, Zhang L, He X, Park C B 2022 Small Methods 6 2101510Google Scholar

    [10]

    Wang T, Kong W W, Yu W C, Gao J F, Dai K, Yan D X, Li Z M 2021 Nanomicro Lett. 13 162Google Scholar

    [11]

    Li M M, Xu Q Y, Jiang W, Farooq A, Qi Y R, Liu L F 2023 Fiber. Polym. 24 771Google Scholar

    [12]

    Si Y F, Jin H H, Zhang Q, Xu D W, Xu R X, Ding A X, Liu D 2022 Ceram. Int. 48 24898Google Scholar

    [13]

    Anand S, Pauline S 2021 Nanotechnology 32 475707Google Scholar

    [14]

    Wang B B, Zhang W Y, Sun J M, Lai C H, Ge S B, Guo H W, Liu Y, Zhang D H 2023 J. Mater. Chem. A 11 8656Google Scholar

    [15]

    Wang C B, Guo Y B, Chen J W, Zhu Y T 2023 Compos. Commun. 37 101444Google Scholar

    [16]

    Yang S, Yan D X, Li Y, Lei J, Li Z M 2021 Ind. Eng. Chem. Res. 60 9824Google Scholar

    [17]

    Jia F F, Lu Z Q, Liu Y Q, Li J Y, Xie F, Dong J Y 2022 ACS Appl. Polym. Mater. 4 6342Google Scholar

    [18]

    Song J W, Xu K J, He J, Ye H J, Xu L X 2023 Polym. Compos. 44 2836Google Scholar

    [19]

    Hu P Y, Lyu J, Fu C, Gong W B, Liao J H, Lu W B, Chen Y P, Zhang X T 2020 ACS Nano 14 688Google Scholar

    [20]

    Cao W T, Ma C, Tan S, Ma M G, Wan P B, Chen F 2019 Nanomicro Lett. 11 72Google Scholar

    [21]

    Mani D, Vu M C, Lim C S, Kim J B, Jeong T H, Kim H J, Islam M A, Lim J H, Kim K M, Kim S R 2023 Carbon 201 568Google Scholar

    [22]

    Lee E S, Lim Y K, Chun Y S, Wang B Y, Lim D S 2017 Carbon 118 650Google Scholar

    [23]

    Khodadadi Yazdi M, Noorbakhsh B, Nazari B, Ranjbar Z 2020 Prog. Org. Coat. 145 105674Google Scholar

    [24]

    安萍, 郭浩, 陈萌, 赵苗苗, 杨江涛, 刘俊, 薛晨阳, 唐军 2014 物理学报 63 237306Google Scholar

    An P, Guo H, Chen M, Zhao M M, Yang J T, Liu J, Xue C Y, Tang J 2014 Acta Phys. Sin. 63 237306Google Scholar

    [25]

    Zheng X H, Hu Q L, Wang Z Q, Nie W Q, Wang P, Li C L 2021 J. Colloid. Interface Sci. 602 680Google Scholar

    [26]

    Chauhan S, Nikhil Mohan P, Raju K C J, Ghotia S, Dwivedi N, Dhand C, Singh S, Kumar P 2023 Colloid. Surfaces A 673 131811Google Scholar

    [27]

    Wang M M, Tian L, Zhang Q Q, You X, Yang J S, Dong S M 2023 Carbon 202 414Google Scholar

  • 图 1  SWCNT/PEI 复合薄膜制备示意图

    Fig. 1.  Schematic diagram of SWCNT/PEI composite film preparation.

    图 2  SWCNT/PEI 复合薄膜的SWCNT层表面SEM图 (a) 1-SWCNT/PEI; (b) 2-SWCNT/PEI; (c) 3-SWCNT/PEI; (d) 4-SWCNT/PEI

    Fig. 2.  SEM images of the surface of SWCNT layer of SWCNT/PEI composite films: (a) 1-SWCNT/PEI; (b) 2-SWCNT/PEI; (c) 3-SWCNT/PEI; (d) 4-SWCNT/PEI.

    图 3  SWCNT/PEI 复合薄膜的PEI层表面SEM图 (a) 1-SWCNT/PEI; (b) 2-SWCNT/PEI; (c) 3-SWCNT/PEI; (d) 4-SWCNT/PEI

    Fig. 3.  SEM images of the surface of PEI layer of SWCNT/PEI composite films: (a) 1-SWCNT/PEI; (b) 2-SWCNT/PEI; (c) 3-SWCNT/PEI; (d) 4-SWCNT/PEI.

    图 4  PEI薄膜和SWCNT/PEI复合薄膜的红外光谱图

    Fig. 4.  FTIR spectra of PEI film and SWCNT/PEI composite films.

    图 5  PEI薄膜、3-SWCNT薄膜和SWCNT/PEI 复合薄膜 (a)拉伸强度和断裂伸长率; (b)应力-应变曲线

    Fig. 5.  PEI film, 3-SWCNT film and SWCNT/PEI composite films: (a) Tensile strength and elongation at break; (b) stress-strain curves.

    图 6  3-SWCNT薄膜和SWCNT/PEI复合薄膜的电导率

    Fig. 6.  Conductivity of 3-SWCNT film and SWCNT/PEI composite films.

    图 7  3-SWCNT薄膜和SWCNT/PEI复合薄膜 (a) SER; (b) SEA; (c) SET; (d)复合薄膜的ε''

    Fig. 7.  3-SWCNT film and SWCNT/PEI composite films: (a) SER; (b) SEA; (c) SET; (d) the value of ε'' of SWCNT/PEI composite films.

    图 8  SWCNT/PEI复合薄膜的电磁屏蔽机理示意图

    Fig. 8.  Schematic diagram of electromagnetic shielding mechanism of SWCNT/PEI composite film.

  • [1]

    Qi Q, Ma L, Zhao B, Wang S, Liu X B, Lei Y, Park C B 2020 ACS Appl. Mater. Interfaces 12 36568Google Scholar

    [2]

    Promlok D, Wichaita W, Phongtamrug S, Kaewsaneha C, Sreearunothai P, Suteewong T, Tangboriboonrat P 2024 Prog. Org. Coat. 186 108002Google Scholar

    [3]

    Kulkarni G, Kandesar P, Velhal N, Phadtare V, Jatratkar A, Shinde S K, Kim D-Y, Puri V 2019 Chem. Eng. J. 355 196Google Scholar

    [4]

    Qiao Y S, Shen L Z, Guo Y, Liu J H, Meng S M 2014 Mater. Techn. 30 182Google Scholar

    [5]

    Lai H R, Li W Y, Xu L, Wang X M, Jiao H, Fan Z Y, Lei Z L, Yuan Y 2020 Chem. Eng. J. 400 125322Google Scholar

    [6]

    Ma M, Shao W Q, Chu Q D, Tao W T, Chen S, Shi Y Q, He H W, Zhu Y L, Wang X 2024 J. Mater. Chem. A 12 1617Google Scholar

    [7]

    Ren W, Zhu H X, Yang Y Q, Chen Y H, Duan H J, Zhao G Z, Liu Y Q 2020 Compos. Part B: Eng. 184 107745Google Scholar

    [8]

    Yang G, Zhou L C, Wang M J, Xiang T T, Pan D, Zhu J Z, Su F M, Ji Y X, Liu C T, Shen C Y 2023 Nano Res. 16 11411Google Scholar

    [9]

    Wei L F, Ma J Z, Ma L, Zhao C X, Xu M L, Qi Q, Zhang W B, Zhang L, He X, Park C B 2022 Small Methods 6 2101510Google Scholar

    [10]

    Wang T, Kong W W, Yu W C, Gao J F, Dai K, Yan D X, Li Z M 2021 Nanomicro Lett. 13 162Google Scholar

    [11]

    Li M M, Xu Q Y, Jiang W, Farooq A, Qi Y R, Liu L F 2023 Fiber. Polym. 24 771Google Scholar

    [12]

    Si Y F, Jin H H, Zhang Q, Xu D W, Xu R X, Ding A X, Liu D 2022 Ceram. Int. 48 24898Google Scholar

    [13]

    Anand S, Pauline S 2021 Nanotechnology 32 475707Google Scholar

    [14]

    Wang B B, Zhang W Y, Sun J M, Lai C H, Ge S B, Guo H W, Liu Y, Zhang D H 2023 J. Mater. Chem. A 11 8656Google Scholar

    [15]

    Wang C B, Guo Y B, Chen J W, Zhu Y T 2023 Compos. Commun. 37 101444Google Scholar

    [16]

    Yang S, Yan D X, Li Y, Lei J, Li Z M 2021 Ind. Eng. Chem. Res. 60 9824Google Scholar

    [17]

    Jia F F, Lu Z Q, Liu Y Q, Li J Y, Xie F, Dong J Y 2022 ACS Appl. Polym. Mater. 4 6342Google Scholar

    [18]

    Song J W, Xu K J, He J, Ye H J, Xu L X 2023 Polym. Compos. 44 2836Google Scholar

    [19]

    Hu P Y, Lyu J, Fu C, Gong W B, Liao J H, Lu W B, Chen Y P, Zhang X T 2020 ACS Nano 14 688Google Scholar

    [20]

    Cao W T, Ma C, Tan S, Ma M G, Wan P B, Chen F 2019 Nanomicro Lett. 11 72Google Scholar

    [21]

    Mani D, Vu M C, Lim C S, Kim J B, Jeong T H, Kim H J, Islam M A, Lim J H, Kim K M, Kim S R 2023 Carbon 201 568Google Scholar

    [22]

    Lee E S, Lim Y K, Chun Y S, Wang B Y, Lim D S 2017 Carbon 118 650Google Scholar

    [23]

    Khodadadi Yazdi M, Noorbakhsh B, Nazari B, Ranjbar Z 2020 Prog. Org. Coat. 145 105674Google Scholar

    [24]

    安萍, 郭浩, 陈萌, 赵苗苗, 杨江涛, 刘俊, 薛晨阳, 唐军 2014 物理学报 63 237306Google Scholar

    An P, Guo H, Chen M, Zhao M M, Yang J T, Liu J, Xue C Y, Tang J 2014 Acta Phys. Sin. 63 237306Google Scholar

    [25]

    Zheng X H, Hu Q L, Wang Z Q, Nie W Q, Wang P, Li C L 2021 J. Colloid. Interface Sci. 602 680Google Scholar

    [26]

    Chauhan S, Nikhil Mohan P, Raju K C J, Ghotia S, Dwivedi N, Dhand C, Singh S, Kumar P 2023 Colloid. Surfaces A 673 131811Google Scholar

    [27]

    Wang M M, Tian L, Zhang Q Q, You X, Yang J S, Dong S M 2023 Carbon 202 414Google Scholar

  • [1] 王成蓉, 唐莉, 周艳萍, 赵翔, 刘长军, 闫丽萍. 透明可开关的超宽带频率选择表面电磁屏蔽研究. 物理学报, 2024, 73(12): 124201. doi: 10.7498/aps.73.20240339
    [2] 丁怡, 盛雷梅. 扭转单壁碳纳米管的第一性原理研究. 物理学报, 2023, 72(19): 197302. doi: 10.7498/aps.72.20230566
    [3] 孙志伟, 何燕, 唐元政. 单壁碳纳米管受限空间内水的分布. 物理学报, 2021, 70(6): 060201. doi: 10.7498/aps.70.20201523
    [4] 孙志刚, 庞雨雨, 胡靖华, 何雄, 李月仇. 紫外光辐照对TiO2纳米线电输运性能的影响及磁阻效应研究. 物理学报, 2016, 65(9): 097301. doi: 10.7498/aps.65.097301
    [5] 牛帅, 焦重庆, 李琳. 中等导电性材料覆盖的金属腔体的电磁屏蔽效能研究. 物理学报, 2013, 62(21): 214102. doi: 10.7498/aps.62.214102
    [6] 焦重庆, 牛帅. 开孔矩形腔体的近场电磁屏蔽效能研究. 物理学报, 2013, 62(11): 114102. doi: 10.7498/aps.62.114102
    [7] 焦重庆, 齐磊. 平面波照射下开孔矩形腔体的电磁耦合与屏蔽效能研究. 物理学报, 2012, 61(13): 134104. doi: 10.7498/aps.61.134104
    [8] 李论雄, 苏江滨, 吴燕, 朱贤方, 王占国. 电子束诱导单壁碳纳米管不稳定的新观察. 物理学报, 2012, 61(3): 036401. doi: 10.7498/aps.61.036401
    [9] 张明琪, 王育华, 董鹏玉, 张佳. 静电纺丝法制备Bi2Fe4O9及其磁学性能的研究. 物理学报, 2012, 61(23): 238102. doi: 10.7498/aps.61.238102
    [10] 赵佩, 郑继明, 陈有为, 郭平, 任兆玉. 单壁碳纳米管吸附氧分子的电子输运性质理论研究. 物理学报, 2011, 60(6): 068501. doi: 10.7498/aps.60.068501
    [11] 秦威, 张振华, 刘新海. 卷曲效应对单壁碳纳米管电子结构的影响. 物理学报, 2011, 60(12): 127303. doi: 10.7498/aps.60.127303
    [12] 徐慧, 肖金, 欧阳方平. 扶手椅型单壁碳纳米管中的B/N对共掺杂. 物理学报, 2010, 59(6): 4186-4193. doi: 10.7498/aps.59.4186
    [13] 向军, 宋福展, 沈湘黔, 褚艳秋. 一维Ni0.5Zn0.5Fe2O4/SiO2复合纳米结构的制备及其磁性能. 物理学报, 2010, 59(7): 4794-4801. doi: 10.7498/aps.59.4794
    [14] 王昆鹏, 师春生, 赵乃勤, 杜希文. B(N)掺杂单壁碳纳米管的Al原子吸附性能的第一性原理研究. 物理学报, 2008, 57(12): 7833-7840. doi: 10.7498/aps.57.7833
    [15] 王照亮, 梁金国, 唐大伟, Y. T. Zhu. 单根单壁碳纳米管导热系数随长度变化尺度效应的实验和理论. 物理学报, 2008, 57(6): 3391-3396. doi: 10.7498/aps.57.3391
    [16] 牛志强, 方 炎. 催化剂组分对制备单壁碳纳米管的影响. 物理学报, 2007, 56(3): 1796-1801. doi: 10.7498/aps.56.1796
    [17] 马燕萍, 尚学府, 顾智企, 李振华, 王 淼, 徐亚伯. 单壁碳纳米管在场发射显示器中的应用研究. 物理学报, 2007, 56(11): 6701-6704. doi: 10.7498/aps.56.6701
    [18] 梁君武, 胡慧芳, 韦建卫, 彭 平. 氧吸附对单壁碳纳米管的电子结构和光学性能的影响. 物理学报, 2005, 54(6): 2877-2882. doi: 10.7498/aps.54.2877
    [19] 陆 地, 颜晓红, 丁建文. 单壁碳纳米管中电子的有效质量. 物理学报, 2004, 53(2): 527-530. doi: 10.7498/aps.53.527
    [20] 孙建平, 张兆祥, 侯士敏, 赵兴钰, 施祖进, 顾镇南, 刘惟敏, 薛增泉. 用场发射显微镜研究单壁碳纳米管场发射. 物理学报, 2001, 50(9): 1805-1809. doi: 10.7498/aps.50.1805
计量
  • 文章访问数:  1743
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-11
  • 修回日期:  2024-07-22
  • 上网日期:  2024-08-05
  • 刊出日期:  2024-09-05

/

返回文章
返回