-
针对Sm-Fe薄膜的不同晶态组织演化和磁性能调控问题,采用分子束气相沉积方法制备Sm-Fe薄膜时,通过改变Sm含量、膜厚和强磁场来调节薄膜的晶态和磁性能.结果表明,Sm含量可以调节Sm-Fe薄膜的晶态组织演化,而晶态组织的演化和强磁场对磁性能有显著影响.Sm-Fe薄膜在Sm原子比为5.8%时是体心立方晶态组织,在Sm含量为33.0%时为非晶态组织,而膜厚和强磁场不会影响薄膜的晶态组织.非晶态薄膜的表面粗糙度和表面颗粒尺寸都比晶态薄膜的小,施加6 T强磁场会使表面颗粒尺寸增大,而表面粗糙度降低.非晶态薄膜的饱和磁化强度Ms比晶态薄膜的Ms(1466 emu/cm3,1 emu/cm3=410-10 T)低约47.6%,施加6 T强磁场使非晶态和晶态薄膜的Ms均降低约50%.Sm-Fe薄膜的矫顽力Hc在6130 Oe (1 Oe=103/(4) A/m)之间,其中,非晶态薄膜的Hc比晶态薄膜的Hc大.施加6 T强磁场使晶态薄膜的Hc增大,而使非晶态薄膜的Hc减小,最高可以减少95%.结果表明含量和强磁场可以用于调控Sm-Fe薄膜的晶态和磁性能.In order to tune the crystalline texture evolution and magnetic properties of the Sm-Fe film, molecular beam vapor deposition method is used to fabricate the Sm-Fe films. Sm content, thickness, and high magnetic field are used to affect the crystalline texture and magnetic properties. X-ray diffraction is used to analyze the texture evolution. Atomic force microscope is used to observe the surface morphology and roughness. Energy-dispersive X-ray spectroscopy is used to measure the compositions of the film. Vibrating sample magnetometer is used to test the magnetic properties. The results show that the crystalline textures are tuned through the Sm content. The crystalline texture evolution and high magnetic field have significant effect on the magnetic properties of the Sm-Fe film. The Sm-Fe film with 5.8% atomic content is of bcc crystal structure and is of amorphous structure with 33.0% Sm. Neither the thickness nor the high magnetic field has an influence on the crystalline texture. The surface roughness and particle size on the surface of the amorphous film are smaller than those of the crystal film. A 6 T high magnetic field increases the surface particle size and reduces the surface roughness. Saturation magnetization Ms of the amorphous film is 47.6% lower than that of the crystal film (1466 emu/cm3, 1 emu/cm3=410-10 T). The 6 T high magnetic field reduces the Ms of crystal and amorphous film by about 50%. The coercivity Hc values of the Sm-Fe films are in a range of 6-130 Oe (1 Oe=103/(4) A/m). The Hc of the amorphous film is higher than that of the crystal film. The 6 T high magnetic field increases the Hc of the crystal film and reduces the Hc of the amorphous film. The highest reduction is 95%. The anisotropy of the crystal film transforms to isotropy of the amorphous film. High magnetic field increases the anisotropy of the crystal film. The squareness of the crystal film is much higher than that of the amorphous film. High magnetic field has a significant effect on the measured magnetic field to obtain saturation magnetization in the film. This measured saturation magnetic field increases in the amorphous film and decreases in the crystal film after the high magnetic field has been exerted during the film growth. These results indicate that the Sm content and high magnetic field can be used to tune the crystal textures and magnetic properties of the Sm-Fe films.
-
Keywords:
- magnetic film /
- high magnetic field /
- Sm-Fe /
- crystalline
[1] Mills D L, Bland J A C 2006 Nanomagnetism Ultrathin Films Multilayers and Nanostructures (Amsterdam: Elsevier)
[2] Dai D S, Fang R Y, Liu Z X, Wan H, Lan J, Rao X L, Ji Y P 1986 Acta Phys. Sin. 35 1502 (in Chinese) [戴道生, 方瑞宜, 刘尊孝, 万虹, 兰健, 饶晓雷, 纪玉平 1986 物理学报 35 1502]
[3] Gheorghe N G, Lungu G A, Husanu M A, Costescu R M, Macovei D, Teodorescu C M 2013 Appl. Surf. Sci. 267 106
[4] Saito T, Furutani T 2009 J. Appl. Phys. 105 07A716
[5] Chen C J, Huang J C, Chou H S, Lai Y H, Chang L W, Du X H, Chu J P, Nieh T G 2009 J. Alloy. Compd. 483 337
[6] Li G, Li M, Wang J, Du J, Wang K, Wang Q 2017 J. Magn. Magn. Mater. 423 353
[7] Fang R Y, Dai D S, Rao X L, Liu Z X, Lan J, Wan H 1988 Acta Phys. Sin. 37 1065 (in Chinese) [方瑞宜, 戴道生, 饶晓雷, 刘尊孝, 兰健, 万虹 1988 物理学报 37 1065]
[8] Hwang S W, Kim J, Lim S U, Kim C K, Yoon C S 2007 Mater. Sci. Eng. A 449 378
[9] Sakano S, Matsumura Y 2017 Mater. Trans. 58 813
[10] Choi Y S, Lee S R, Han S H 1998 J. Appl. Phys. 83 7270
[11] Seong Y H, Kim K S, Yu S C 1999 IEEE Trans. Magn. 35 3808
[12] Nishi Y, Matsumura Y, Kadowaki A, Masuda S 2005 Mater. Trans. 46 3063
[13] Kim T W, Lim S H, Gambino R J 2001 J. Appl. Phys. 89 7212
[14] Takato Y, Mitsuru O, Fumiyoshi K, Masaaki F 2013 EPJ Web Conf. 40 06007
[15] Wang L, Du Z F, Zhao D L 2007 J. Rare Earths 25 444
[16] Wang Q, He J C 2014 Material Science Under High Magnetic Field (Beijing: Science Press) (in Chinese) [王强, 赫冀成2014 强磁场材料科学 (北京: 科学出版社)]
[17] Li G, Du J, Wang H, Wang Q, Ma Y, He J 2014 Mater. Lett. 133 53
[18] Brinza F, Sulitanu N 2003 Sens. Actuators A 106 310
[19] Lim S H, Han S H, Kim H J, Song S H, Lee D 2000 J. Appl. Phys. 87 5801
[20] Zhao Y P, Gamache R M, Wang G C, Lu T M 2001 J. Appl. Phys. 89 1325
[21] Hedayati K, Nabiyouni G 2014 J. Appl. Phys. A 116 1605
[22] Suzuki K, Herzer G 2012 Scr. Mater. 67 548
[23] Ruiz J M, Zhang X X, Ferrater C, Tejada J 1995 Phys. Rev. B 52 10202
[24] Du J, Li G, Wang Q, Ma Y, Cao Y, He J 2015 Vacuum 121 88
[25] Tinouche M, Kharmouche A, Aktaş B, Yildiz F, Kobay A N 2015 J. Supercond. Nov. Magn. 28 921
-
[1] Mills D L, Bland J A C 2006 Nanomagnetism Ultrathin Films Multilayers and Nanostructures (Amsterdam: Elsevier)
[2] Dai D S, Fang R Y, Liu Z X, Wan H, Lan J, Rao X L, Ji Y P 1986 Acta Phys. Sin. 35 1502 (in Chinese) [戴道生, 方瑞宜, 刘尊孝, 万虹, 兰健, 饶晓雷, 纪玉平 1986 物理学报 35 1502]
[3] Gheorghe N G, Lungu G A, Husanu M A, Costescu R M, Macovei D, Teodorescu C M 2013 Appl. Surf. Sci. 267 106
[4] Saito T, Furutani T 2009 J. Appl. Phys. 105 07A716
[5] Chen C J, Huang J C, Chou H S, Lai Y H, Chang L W, Du X H, Chu J P, Nieh T G 2009 J. Alloy. Compd. 483 337
[6] Li G, Li M, Wang J, Du J, Wang K, Wang Q 2017 J. Magn. Magn. Mater. 423 353
[7] Fang R Y, Dai D S, Rao X L, Liu Z X, Lan J, Wan H 1988 Acta Phys. Sin. 37 1065 (in Chinese) [方瑞宜, 戴道生, 饶晓雷, 刘尊孝, 兰健, 万虹 1988 物理学报 37 1065]
[8] Hwang S W, Kim J, Lim S U, Kim C K, Yoon C S 2007 Mater. Sci. Eng. A 449 378
[9] Sakano S, Matsumura Y 2017 Mater. Trans. 58 813
[10] Choi Y S, Lee S R, Han S H 1998 J. Appl. Phys. 83 7270
[11] Seong Y H, Kim K S, Yu S C 1999 IEEE Trans. Magn. 35 3808
[12] Nishi Y, Matsumura Y, Kadowaki A, Masuda S 2005 Mater. Trans. 46 3063
[13] Kim T W, Lim S H, Gambino R J 2001 J. Appl. Phys. 89 7212
[14] Takato Y, Mitsuru O, Fumiyoshi K, Masaaki F 2013 EPJ Web Conf. 40 06007
[15] Wang L, Du Z F, Zhao D L 2007 J. Rare Earths 25 444
[16] Wang Q, He J C 2014 Material Science Under High Magnetic Field (Beijing: Science Press) (in Chinese) [王强, 赫冀成2014 强磁场材料科学 (北京: 科学出版社)]
[17] Li G, Du J, Wang H, Wang Q, Ma Y, He J 2014 Mater. Lett. 133 53
[18] Brinza F, Sulitanu N 2003 Sens. Actuators A 106 310
[19] Lim S H, Han S H, Kim H J, Song S H, Lee D 2000 J. Appl. Phys. 87 5801
[20] Zhao Y P, Gamache R M, Wang G C, Lu T M 2001 J. Appl. Phys. 89 1325
[21] Hedayati K, Nabiyouni G 2014 J. Appl. Phys. A 116 1605
[22] Suzuki K, Herzer G 2012 Scr. Mater. 67 548
[23] Ruiz J M, Zhang X X, Ferrater C, Tejada J 1995 Phys. Rev. B 52 10202
[24] Du J, Li G, Wang Q, Ma Y, Cao Y, He J 2015 Vacuum 121 88
[25] Tinouche M, Kharmouche A, Aktaş B, Yildiz F, Kobay A N 2015 J. Supercond. Nov. Magn. 28 921
计量
- 文章访问数: 6624
- PDF下载量: 107
- 被引次数: 0