搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强磁场下Sm-Fe薄膜不同晶态组织演化及磁性能调控

李国建 常玲 刘诗莹 李萌萌 崔伟斌 王强

引用本文:
Citation:

强磁场下Sm-Fe薄膜不同晶态组织演化及磁性能调控

李国建, 常玲, 刘诗莹, 李萌萌, 崔伟斌, 王强

Evolutions of different crystalline textures in Sm-Fe film fabricated under high magnetic field and subsequent tuning magnetic properties

Li Guo-Jian, Chang Ling, Liu Shi-Ying, Li Meng-Meng, Cui Wei-Bin, Wang Qiang
PDF
导出引用
  • 针对Sm-Fe薄膜的不同晶态组织演化和磁性能调控问题,采用分子束气相沉积方法制备Sm-Fe薄膜时,通过改变Sm含量、膜厚和强磁场来调节薄膜的晶态和磁性能.结果表明,Sm含量可以调节Sm-Fe薄膜的晶态组织演化,而晶态组织的演化和强磁场对磁性能有显著影响.Sm-Fe薄膜在Sm原子比为5.8%时是体心立方晶态组织,在Sm含量为33.0%时为非晶态组织,而膜厚和强磁场不会影响薄膜的晶态组织.非晶态薄膜的表面粗糙度和表面颗粒尺寸都比晶态薄膜的小,施加6 T强磁场会使表面颗粒尺寸增大,而表面粗糙度降低.非晶态薄膜的饱和磁化强度Ms比晶态薄膜的Ms(1466 emu/cm3,1 emu/cm3=410-10 T)低约47.6%,施加6 T强磁场使非晶态和晶态薄膜的Ms均降低约50%.Sm-Fe薄膜的矫顽力Hc在6130 Oe (1 Oe=103/(4) A/m)之间,其中,非晶态薄膜的Hc比晶态薄膜的Hc大.施加6 T强磁场使晶态薄膜的Hc增大,而使非晶态薄膜的Hc减小,最高可以减少95%.结果表明含量和强磁场可以用于调控Sm-Fe薄膜的晶态和磁性能.
    In order to tune the crystalline texture evolution and magnetic properties of the Sm-Fe film, molecular beam vapor deposition method is used to fabricate the Sm-Fe films. Sm content, thickness, and high magnetic field are used to affect the crystalline texture and magnetic properties. X-ray diffraction is used to analyze the texture evolution. Atomic force microscope is used to observe the surface morphology and roughness. Energy-dispersive X-ray spectroscopy is used to measure the compositions of the film. Vibrating sample magnetometer is used to test the magnetic properties. The results show that the crystalline textures are tuned through the Sm content. The crystalline texture evolution and high magnetic field have significant effect on the magnetic properties of the Sm-Fe film. The Sm-Fe film with 5.8% atomic content is of bcc crystal structure and is of amorphous structure with 33.0% Sm. Neither the thickness nor the high magnetic field has an influence on the crystalline texture. The surface roughness and particle size on the surface of the amorphous film are smaller than those of the crystal film. A 6 T high magnetic field increases the surface particle size and reduces the surface roughness. Saturation magnetization Ms of the amorphous film is 47.6% lower than that of the crystal film (1466 emu/cm3, 1 emu/cm3=410-10 T). The 6 T high magnetic field reduces the Ms of crystal and amorphous film by about 50%. The coercivity Hc values of the Sm-Fe films are in a range of 6-130 Oe (1 Oe=103/(4) A/m). The Hc of the amorphous film is higher than that of the crystal film. The 6 T high magnetic field increases the Hc of the crystal film and reduces the Hc of the amorphous film. The highest reduction is 95%. The anisotropy of the crystal film transforms to isotropy of the amorphous film. High magnetic field increases the anisotropy of the crystal film. The squareness of the crystal film is much higher than that of the amorphous film. High magnetic field has a significant effect on the measured magnetic field to obtain saturation magnetization in the film. This measured saturation magnetic field increases in the amorphous film and decreases in the crystal film after the high magnetic field has been exerted during the film growth. These results indicate that the Sm content and high magnetic field can be used to tune the crystal textures and magnetic properties of the Sm-Fe films.
      通信作者: 王强, wangq@mail.neu.edu.cn
    • 基金项目: 国家杰出青年科学基金(批准号:51425401)和中央高等学校基本科研业务费(批准号:N160905001,N160907001)资助的课题.
      Corresponding author: Wang Qiang, wangq@mail.neu.edu.cn
    • Funds: Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 51425401) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. N160905001, N160907001).
    [1]

    Mills D L, Bland J A C 2006 Nanomagnetism Ultrathin Films Multilayers and Nanostructures (Amsterdam: Elsevier)

    [2]

    Dai D S, Fang R Y, Liu Z X, Wan H, Lan J, Rao X L, Ji Y P 1986 Acta Phys. Sin. 35 1502 (in Chinese) [戴道生, 方瑞宜, 刘尊孝, 万虹, 兰健, 饶晓雷, 纪玉平 1986 物理学报 35 1502]

    [3]

    Gheorghe N G, Lungu G A, Husanu M A, Costescu R M, Macovei D, Teodorescu C M 2013 Appl. Surf. Sci. 267 106

    [4]

    Saito T, Furutani T 2009 J. Appl. Phys. 105 07A716

    [5]

    Chen C J, Huang J C, Chou H S, Lai Y H, Chang L W, Du X H, Chu J P, Nieh T G 2009 J. Alloy. Compd. 483 337

    [6]

    Li G, Li M, Wang J, Du J, Wang K, Wang Q 2017 J. Magn. Magn. Mater. 423 353

    [7]

    Fang R Y, Dai D S, Rao X L, Liu Z X, Lan J, Wan H 1988 Acta Phys. Sin. 37 1065 (in Chinese) [方瑞宜, 戴道生, 饶晓雷, 刘尊孝, 兰健, 万虹 1988 物理学报 37 1065]

    [8]

    Hwang S W, Kim J, Lim S U, Kim C K, Yoon C S 2007 Mater. Sci. Eng. A 449 378

    [9]

    Sakano S, Matsumura Y 2017 Mater. Trans. 58 813

    [10]

    Choi Y S, Lee S R, Han S H 1998 J. Appl. Phys. 83 7270

    [11]

    Seong Y H, Kim K S, Yu S C 1999 IEEE Trans. Magn. 35 3808

    [12]

    Nishi Y, Matsumura Y, Kadowaki A, Masuda S 2005 Mater. Trans. 46 3063

    [13]

    Kim T W, Lim S H, Gambino R J 2001 J. Appl. Phys. 89 7212

    [14]

    Takato Y, Mitsuru O, Fumiyoshi K, Masaaki F 2013 EPJ Web Conf. 40 06007

    [15]

    Wang L, Du Z F, Zhao D L 2007 J. Rare Earths 25 444

    [16]

    Wang Q, He J C 2014 Material Science Under High Magnetic Field (Beijing: Science Press) (in Chinese) [王强, 赫冀成2014 强磁场材料科学 (北京: 科学出版社)]

    [17]

    Li G, Du J, Wang H, Wang Q, Ma Y, He J 2014 Mater. Lett. 133 53

    [18]

    Brinza F, Sulitanu N 2003 Sens. Actuators A 106 310

    [19]

    Lim S H, Han S H, Kim H J, Song S H, Lee D 2000 J. Appl. Phys. 87 5801

    [20]

    Zhao Y P, Gamache R M, Wang G C, Lu T M 2001 J. Appl. Phys. 89 1325

    [21]

    Hedayati K, Nabiyouni G 2014 J. Appl. Phys. A 116 1605

    [22]

    Suzuki K, Herzer G 2012 Scr. Mater. 67 548

    [23]

    Ruiz J M, Zhang X X, Ferrater C, Tejada J 1995 Phys. Rev. B 52 10202

    [24]

    Du J, Li G, Wang Q, Ma Y, Cao Y, He J 2015 Vacuum 121 88

    [25]

    Tinouche M, Kharmouche A, Aktaş B, Yildiz F, Kobay A N 2015 J. Supercond. Nov. Magn. 28 921

  • [1]

    Mills D L, Bland J A C 2006 Nanomagnetism Ultrathin Films Multilayers and Nanostructures (Amsterdam: Elsevier)

    [2]

    Dai D S, Fang R Y, Liu Z X, Wan H, Lan J, Rao X L, Ji Y P 1986 Acta Phys. Sin. 35 1502 (in Chinese) [戴道生, 方瑞宜, 刘尊孝, 万虹, 兰健, 饶晓雷, 纪玉平 1986 物理学报 35 1502]

    [3]

    Gheorghe N G, Lungu G A, Husanu M A, Costescu R M, Macovei D, Teodorescu C M 2013 Appl. Surf. Sci. 267 106

    [4]

    Saito T, Furutani T 2009 J. Appl. Phys. 105 07A716

    [5]

    Chen C J, Huang J C, Chou H S, Lai Y H, Chang L W, Du X H, Chu J P, Nieh T G 2009 J. Alloy. Compd. 483 337

    [6]

    Li G, Li M, Wang J, Du J, Wang K, Wang Q 2017 J. Magn. Magn. Mater. 423 353

    [7]

    Fang R Y, Dai D S, Rao X L, Liu Z X, Lan J, Wan H 1988 Acta Phys. Sin. 37 1065 (in Chinese) [方瑞宜, 戴道生, 饶晓雷, 刘尊孝, 兰健, 万虹 1988 物理学报 37 1065]

    [8]

    Hwang S W, Kim J, Lim S U, Kim C K, Yoon C S 2007 Mater. Sci. Eng. A 449 378

    [9]

    Sakano S, Matsumura Y 2017 Mater. Trans. 58 813

    [10]

    Choi Y S, Lee S R, Han S H 1998 J. Appl. Phys. 83 7270

    [11]

    Seong Y H, Kim K S, Yu S C 1999 IEEE Trans. Magn. 35 3808

    [12]

    Nishi Y, Matsumura Y, Kadowaki A, Masuda S 2005 Mater. Trans. 46 3063

    [13]

    Kim T W, Lim S H, Gambino R J 2001 J. Appl. Phys. 89 7212

    [14]

    Takato Y, Mitsuru O, Fumiyoshi K, Masaaki F 2013 EPJ Web Conf. 40 06007

    [15]

    Wang L, Du Z F, Zhao D L 2007 J. Rare Earths 25 444

    [16]

    Wang Q, He J C 2014 Material Science Under High Magnetic Field (Beijing: Science Press) (in Chinese) [王强, 赫冀成2014 强磁场材料科学 (北京: 科学出版社)]

    [17]

    Li G, Du J, Wang H, Wang Q, Ma Y, He J 2014 Mater. Lett. 133 53

    [18]

    Brinza F, Sulitanu N 2003 Sens. Actuators A 106 310

    [19]

    Lim S H, Han S H, Kim H J, Song S H, Lee D 2000 J. Appl. Phys. 87 5801

    [20]

    Zhao Y P, Gamache R M, Wang G C, Lu T M 2001 J. Appl. Phys. 89 1325

    [21]

    Hedayati K, Nabiyouni G 2014 J. Appl. Phys. A 116 1605

    [22]

    Suzuki K, Herzer G 2012 Scr. Mater. 67 548

    [23]

    Ruiz J M, Zhang X X, Ferrater C, Tejada J 1995 Phys. Rev. B 52 10202

    [24]

    Du J, Li G, Wang Q, Ma Y, Cao Y, He J 2015 Vacuum 121 88

    [25]

    Tinouche M, Kharmouche A, Aktaş B, Yildiz F, Kobay A N 2015 J. Supercond. Nov. Magn. 28 921

  • [1] 左小伟, 安佰灵, 黄德洋, 张林, 王恩刚. 强磁场作用下Cu熔体中富Fe颗粒的迁移与排列. 物理学报, 2016, 65(13): 137401. doi: 10.7498/aps.65.137401
    [2] 曹永泽, 王强, 李国建, 马永会, 隋旭东, 赫冀成. 强磁场对不同厚度Fe-Ni纳米多晶薄膜的生长过程及磁性能的影响. 物理学报, 2015, 64(6): 067502. doi: 10.7498/aps.64.067502
    [3] 门福殿, 田青松, 陈新龙. 强磁场中弱相互作用费米气体的稳定性. 物理学报, 2014, 63(12): 120504. doi: 10.7498/aps.63.120504
    [4] 苑轶, 李英龙, 王强, 刘铁, 高鹏飞, 赫冀成. 强磁场对Mn-Sb包晶合金相变及凝固组织的影响. 物理学报, 2013, 62(20): 208106. doi: 10.7498/aps.62.208106
    [5] 周广宏, 潘旋, 朱雨富. BiFeO3/Ni81Fe19磁性双层膜中的交换偏置及其热稳定性研究. 物理学报, 2013, 62(9): 097501. doi: 10.7498/aps.62.097501
    [6] 曹永泽, 李国建, 王强, 马永会, 王慧敏, 赫冀成. 强磁场对不同厚度Fe80Ni20薄膜的微观结构及磁性能的影响. 物理学报, 2013, 62(22): 227501. doi: 10.7498/aps.62.227501
    [7] 门福殿, 王海堂, 何晓刚. 强磁场中Fermi气体的稳定性及顺磁性. 物理学报, 2012, 61(10): 100503. doi: 10.7498/aps.61.100503
    [8] 门福殿, 王炳福, 何晓刚, 隗群梅. 强磁场中弱相互作用费米气体的热力学性质. 物理学报, 2011, 60(8): 080501. doi: 10.7498/aps.60.080501
    [9] 任树洋, 任忠鸣, 任维丽. 晶粒尺寸对气相沉积薄膜磁取向生长的影响研究. 物理学报, 2011, 60(1): 016104. doi: 10.7498/aps.60.016104
    [10] 曾思良, 倪飞飞, 何建锋, 邹士阳, 颜君. 强磁场中氢原子的能级结构. 物理学报, 2011, 60(4): 043201. doi: 10.7498/aps.60.043201
    [11] 王春江, 苑轶, 王强, 刘铁, 娄长胜, 赫冀成. 强磁场条件下金属凝固过程中第二相的迁移行为. 物理学报, 2010, 59(5): 3116-3122. doi: 10.7498/aps.59.3116
    [12] 唐军, 刘忠良, 任鹏, 姚涛, 闫文盛, 徐彭寿, 韦世强. Mn掺杂SiC磁性薄膜的结构表征. 物理学报, 2010, 59(7): 4774-4780. doi: 10.7498/aps.59.4774
    [13] 刘晶晶. 超强磁场对中子星外壳层核素56Fe,56Co,56Ni,56Mn和56Cr电子俘获过程中微子能量损失的影响. 物理学报, 2010, 59(7): 5169-5174. doi: 10.7498/aps.59.5169
    [14] 任树洋, 任忠鸣, 任维丽, 操光辉. 3 T强磁场对真空蒸发Zn薄膜晶体结构的影响. 物理学报, 2009, 58(8): 5567-5571. doi: 10.7498/aps.58.5567
    [15] 赵安昆, 任忠鸣, 任树洋, 操光辉, 任维丽. 强磁场对真空蒸镀制取Te薄膜的影响. 物理学报, 2009, 58(10): 7101-7107. doi: 10.7498/aps.58.7101
    [16] 高 翱, 王 强, 王春江, 刘 铁, 张 超, 赫冀成. 强磁场条件下Mn-Sb梯度复合材料的制备. 物理学报, 2008, 57(2): 767-771. doi: 10.7498/aps.57.767
    [17] 王春江, 王 强, 王亚勤, 黄 剑, 赫冀成. 强磁场对Al-Si合金凝固组织中硅分布的影响. 物理学报, 2006, 55(2): 648-654. doi: 10.7498/aps.55.648
    [18] 庞雪君, 王 强, 王春江, 王亚勤, 李亚彬, 赫冀成. 强磁场对铝合金中溶质组元分布状态的影响效果. 物理学报, 2006, 55(10): 5129-5134. doi: 10.7498/aps.55.5129
    [19] 王立锦, 滕 蛟, 于广华. 超薄Fe层在反铁磁NiO(001)面上沉积的研究. 物理学报, 2006, 55(8): 4282-4286. doi: 10.7498/aps.55.4282
    [20] 王亦忠, 张茂才, 乔, 王 晶, 王荫君, 沈保根, 胡伯平. 各向同性纳米结构Fe-Pt薄膜的结构和磁性. 物理学报, 2000, 49(8): 1600-1605. doi: 10.7498/aps.49.1600
计量
  • 文章访问数:  3138
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-28
  • 修回日期:  2018-02-12
  • 刊出日期:  2018-05-05

强磁场下Sm-Fe薄膜不同晶态组织演化及磁性能调控

  • 1. 东北大学, 材料电磁过程研究教育部重点实验室, 沈阳 110819;
  • 2. 东北大学冶金学院, 沈阳 110819;
  • 3. 东北大学材料科学与工程学院, 沈阳 110819
  • 通信作者: 王强, wangq@mail.neu.edu.cn
    基金项目: 国家杰出青年科学基金(批准号:51425401)和中央高等学校基本科研业务费(批准号:N160905001,N160907001)资助的课题.

摘要: 针对Sm-Fe薄膜的不同晶态组织演化和磁性能调控问题,采用分子束气相沉积方法制备Sm-Fe薄膜时,通过改变Sm含量、膜厚和强磁场来调节薄膜的晶态和磁性能.结果表明,Sm含量可以调节Sm-Fe薄膜的晶态组织演化,而晶态组织的演化和强磁场对磁性能有显著影响.Sm-Fe薄膜在Sm原子比为5.8%时是体心立方晶态组织,在Sm含量为33.0%时为非晶态组织,而膜厚和强磁场不会影响薄膜的晶态组织.非晶态薄膜的表面粗糙度和表面颗粒尺寸都比晶态薄膜的小,施加6 T强磁场会使表面颗粒尺寸增大,而表面粗糙度降低.非晶态薄膜的饱和磁化强度Ms比晶态薄膜的Ms(1466 emu/cm3,1 emu/cm3=410-10 T)低约47.6%,施加6 T强磁场使非晶态和晶态薄膜的Ms均降低约50%.Sm-Fe薄膜的矫顽力Hc在6130 Oe (1 Oe=103/(4) A/m)之间,其中,非晶态薄膜的Hc比晶态薄膜的Hc大.施加6 T强磁场使晶态薄膜的Hc增大,而使非晶态薄膜的Hc减小,最高可以减少95%.结果表明含量和强磁场可以用于调控Sm-Fe薄膜的晶态和磁性能.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回