搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BiFeO3/Ni81Fe19磁性双层膜中的交换偏置及其热稳定性研究

周广宏 潘旋 朱雨富

引用本文:
Citation:

BiFeO3/Ni81Fe19磁性双层膜中的交换偏置及其热稳定性研究

周广宏, 潘旋, 朱雨富

Exchange bias in BiFeO3/Ni81Fe19 magnetic films and its thermal stability

Zhou Guang-Hong, Pan Xuan, Zhu Yu-Fu
PDF
导出引用
  • 研究了磁场诱导生长的BiFeO3/Ni18Fe19磁性双层膜中 的交换偏置及其热稳定性. 结果表明: BiFeO3/Ni18Fe19双层膜中的交换偏置场Hex未表现出明显的磁练习效应. 在负饱和磁场等待过程中, BiFeO3/Ni18Fe19双层膜磁滞回线的前支和后支曲 线都随着在负饱和磁场中等待时间tsat的增加向正场方向偏移. 交换偏置场Hex的大小随着等待时间tsat的增加而减小, 矫顽力Hc基本不变. 交换偏置场Hex的大小随测量温度Tm的升高变化不明显, 表现出良好的热稳定性; 但矫顽力Hc随Tm的升高而显著减小. 良好的热稳定性应该来源于铁电性和反铁磁性间的共同耦合作用.
    This paper deals with the exchange bias and its thermal stability in magnetic BiFeO3/Ni81Fe19 bilayer sputtered under an electromagnetic field. The results show that the BiFeO3/Ni18Fe19 bilayer presents an in-plane uniaxial magnetic anisotropy and a significant exchange bias effect, however the exchange bias field Hex in the BiFeO3/Ni18Fe19 bilayer does not show a visible training effect. The forward and recoil loop shifts towards positive fields, while holding the film in a negative saturation field. Hex decreases monotonously with the increase in the holding time (tsat), whereas Hc is almost the same. With increasing temperature Tm, Hex will not alter significantly, which means that Hex is not sensitive to the temperature, showing a good thermal stability. However, Hc may reduce rapidly with the increase in temperature. We believe that the good thermal stability may result from the coupling between ferroelectric and antiferromagnetic moments in BiFeO3.
    • 基金项目: 国家自然科学基金(批准号:51175212)和江苏省自然科学基金(批准号:BK2012668)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51175212), and Natural Science Foundation of Jiangsu Province, China (Grant No. 2012668).
    [1]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413

    [2]

    Malozemoff A P 1987 Phys. Rev. B 35 3679

    [3]

    Fernandez-Outon L E, Vallejo-Fernandez G, Manzoor S, Hillebrands B, O'Grady K 2008 J. Appl. Phys. 104 093907

    [4]

    Lenssen K M H, vanKesteren H W, Rijks T, Kools J C S, deNooijer M C, Coehoorn R, Folkerts W 1997 Sensor. Actuat. A 60 90

    [5]

    Coehoorn R, Kools J C S, Rijks T, Lenssen K M H 1998 Philips J. Res. 51 93

    [6]

    Lee K, Kang S H 2010 IEEE Trans. Magn. 46 1537

    [7]

    Cao J, Freitas P P 2010 J. Appl. Phys. 107 09E712

    [8]

    Wu J G, Wang J 2010 J. Alloy. Compd. 507 L4

    [9]

    Matsuda M, Fishman R S, Hong T, Lee C H, Ushiyama T, Yanagisawa Y, Tomioka Y, Ito T 2012 Phys. Rev. Lett. 109 067205

    [10]

    Fiebig M, Lottermoser T, Frohlich D, Goltsev A V, Pisarev R V 2002 Nature 419 818

    [11]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719

    [12]

    Chai C L, Teng J, Yu G H, Zhu F W, Lai W Y, Xiao J M 2002 Acta Phys. Sin. 51 1846 (in Chinese) [柴春林, 滕蛟, 于广华, 朱逢吾, 赖武彦, 肖纪美 2002 物理学报 51 1846]

    [13]

    Zhou G H, Wang Y G, Qi X J 2009 Chin. Phys. Lett. 26 037501

    [14]

    Li F F, Sharif R, Jiang L X, Zhang X Q, Han X F, Wang Y, Zhang Z 2005 J. Appl. Phys. 98 113710

    [15]

    Li Y F, Xiao J Q, Dimitrov D V 2002 J. Appl. Phys. 91 7227

    [16]

    Tang X, Dai J, Zhu X, Song W, Sun Y 2011 J. Alloy. Compd. 509 4748

    [17]

    Wu J, Wang J 2010 J. Am. Ceram. Soc. 93 1422

    [18]

    Binek C, Polisetty S, He X, Berger A 2006 Phys. Rev. Lett. 96 067201

    [19]

    Xi H, Franzen S, Mao S, White R M 2007 Phys. Rev. B 75 014434

    [20]

    Zhou G H, Wang Y G, Qi X J, Li Z Q, Chen J K 2009 Chin. Phys. B 18 790

    [21]

    Han D H, Gao Z, Mao S I, Ding J R 2000 J. Appl. Phys. 87 6424

    [22]

    Nishioka K 1999 J. Appl. Phys. 86 6305

    [23]

    Zeches R J, Rossell M D, Zhang J X, Hatt A J, He Q, Yang C H, Kumar A, Wang C H, Melville A, Adamo C, Sheng G, Chu Y H, Ihlefeld J F, Erni R, Ederer C, Gopalan V, Chen L Q, Schlom D G, Spaldin N A, Martin L W, Ramesh R 2009 Science 326 977

    [24]

    Yuan X, Xue X, Zhang X, Wen Z, Yang M, Du J, Wu D, Xu Q 2012 Solid State Commun. 152 241

    [25]

    Zavaliche F, Zheng H, Mohaddes-Ardabili L, Yang S Y, Zhan Q, Shafer P, Reilly E, Chopdekar R, Jia Y, Wright P, Schlom D G, Suzuki Y, Ramesh R 2005 Nano Lett. 5 1793

  • [1]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413

    [2]

    Malozemoff A P 1987 Phys. Rev. B 35 3679

    [3]

    Fernandez-Outon L E, Vallejo-Fernandez G, Manzoor S, Hillebrands B, O'Grady K 2008 J. Appl. Phys. 104 093907

    [4]

    Lenssen K M H, vanKesteren H W, Rijks T, Kools J C S, deNooijer M C, Coehoorn R, Folkerts W 1997 Sensor. Actuat. A 60 90

    [5]

    Coehoorn R, Kools J C S, Rijks T, Lenssen K M H 1998 Philips J. Res. 51 93

    [6]

    Lee K, Kang S H 2010 IEEE Trans. Magn. 46 1537

    [7]

    Cao J, Freitas P P 2010 J. Appl. Phys. 107 09E712

    [8]

    Wu J G, Wang J 2010 J. Alloy. Compd. 507 L4

    [9]

    Matsuda M, Fishman R S, Hong T, Lee C H, Ushiyama T, Yanagisawa Y, Tomioka Y, Ito T 2012 Phys. Rev. Lett. 109 067205

    [10]

    Fiebig M, Lottermoser T, Frohlich D, Goltsev A V, Pisarev R V 2002 Nature 419 818

    [11]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719

    [12]

    Chai C L, Teng J, Yu G H, Zhu F W, Lai W Y, Xiao J M 2002 Acta Phys. Sin. 51 1846 (in Chinese) [柴春林, 滕蛟, 于广华, 朱逢吾, 赖武彦, 肖纪美 2002 物理学报 51 1846]

    [13]

    Zhou G H, Wang Y G, Qi X J 2009 Chin. Phys. Lett. 26 037501

    [14]

    Li F F, Sharif R, Jiang L X, Zhang X Q, Han X F, Wang Y, Zhang Z 2005 J. Appl. Phys. 98 113710

    [15]

    Li Y F, Xiao J Q, Dimitrov D V 2002 J. Appl. Phys. 91 7227

    [16]

    Tang X, Dai J, Zhu X, Song W, Sun Y 2011 J. Alloy. Compd. 509 4748

    [17]

    Wu J, Wang J 2010 J. Am. Ceram. Soc. 93 1422

    [18]

    Binek C, Polisetty S, He X, Berger A 2006 Phys. Rev. Lett. 96 067201

    [19]

    Xi H, Franzen S, Mao S, White R M 2007 Phys. Rev. B 75 014434

    [20]

    Zhou G H, Wang Y G, Qi X J, Li Z Q, Chen J K 2009 Chin. Phys. B 18 790

    [21]

    Han D H, Gao Z, Mao S I, Ding J R 2000 J. Appl. Phys. 87 6424

    [22]

    Nishioka K 1999 J. Appl. Phys. 86 6305

    [23]

    Zeches R J, Rossell M D, Zhang J X, Hatt A J, He Q, Yang C H, Kumar A, Wang C H, Melville A, Adamo C, Sheng G, Chu Y H, Ihlefeld J F, Erni R, Ederer C, Gopalan V, Chen L Q, Schlom D G, Spaldin N A, Martin L W, Ramesh R 2009 Science 326 977

    [24]

    Yuan X, Xue X, Zhang X, Wen Z, Yang M, Du J, Wu D, Xu Q 2012 Solid State Commun. 152 241

    [25]

    Zavaliche F, Zheng H, Mohaddes-Ardabili L, Yang S Y, Zhan Q, Shafer P, Reilly E, Chopdekar R, Jia Y, Wright P, Schlom D G, Suzuki Y, Ramesh R 2005 Nano Lett. 5 1793

  • [1] 王晓波, 李克伟, 高丽娟, 程旭东, 蒋蓉. 耐高温CrAlON基太阳能光谱选择性吸收涂层的制备与热稳定性. 物理学报, 2021, 70(2): 027103. doi: 10.7498/aps.70.20200845
    [2] 朱小芹, 胡益丰. Ge50Te50/Zn15Sb85纳米复合多层薄膜在高热稳定性和低功耗相变存储器中的应用. 物理学报, 2020, 69(14): 146101. doi: 10.7498/aps.69.20200502
    [3] 赵润, 杨浩. 多铁性钙钛矿薄膜的氧空位调控研究进展. 物理学报, 2018, 67(15): 156101. doi: 10.7498/aps.67.20181028
    [4] 刘恩华, 陈钊, 温晓莉, 陈长乐. 顺磁性La2/3Sr1/3MnO3层对Bi0.8Ba0.2FeO3薄膜多铁性能的影响. 物理学报, 2016, 65(11): 117701. doi: 10.7498/aps.65.117701
    [5] 李永超, 周航, 潘丹峰, 张浩, 万建国. Co/Co3O4/PZT多铁复合薄膜的交换偏置效应及其磁电耦合特性. 物理学报, 2015, 64(9): 097701. doi: 10.7498/aps.64.097701
    [6] 张章, 熊贤仲, 乙姣姣, 李金富. Al-Ni-RE非晶合金的晶化行为和热稳定性. 物理学报, 2013, 62(13): 136401. doi: 10.7498/aps.62.136401
    [7] 王美娜, 李英, 王天兴, 刘国栋. 正交多铁性材料DyMnO3的磁性质研究. 物理学报, 2013, 62(22): 227101. doi: 10.7498/aps.62.227101
    [8] 闫静, 祁先进, 王寅岗. 退火对IrMn基磁隧道结多层膜热稳定性的影响. 物理学报, 2011, 60(8): 088106. doi: 10.7498/aps.60.088106
    [9] 张颖, 何智兵, 李萍, 闫建成. 硅掺杂辉光放电聚合物薄膜的热稳定性研究. 物理学报, 2011, 60(12): 126501. doi: 10.7498/aps.60.126501
    [10] 许雪芹, 汤晨毅, 王璇, 程玲, 姚忻. 面内和面外取向对RBa2Cu3Oz薄膜热稳定性影响的研究. 物理学报, 2010, 59(2): 1294-1301. doi: 10.7498/aps.59.1294
    [11] 田宏玉, 胡经国, 许小勇. 铁磁/反铁磁双层膜中冷却场对交换偏置场的影响. 物理学报, 2009, 58(4): 2757-2761. doi: 10.7498/aps.58.2757
    [12] 张凯旺, 孟利军, 李 俊, 刘文亮, 唐 翌, 钟建新. 碳纳米管内金纳米线的结构与热稳定性. 物理学报, 2008, 57(7): 4347-4355. doi: 10.7498/aps.57.4347
    [13] 许小勇, 潘 靖, 胡经国. 交换偏置双层膜中的反铁磁自旋结构及其交换各向异性. 物理学报, 2007, 56(9): 5476-5482. doi: 10.7498/aps.56.5476
    [14] 李 岩, 陈庆永, 姜宏伟, 王艾玲, 郑 鹉. PtMn层厚度对NiFe/PtMn双层膜交换偏置形成及热稳定性的影响. 物理学报, 2006, 55(12): 6647-6650. doi: 10.7498/aps.55.6647
    [15] 潘 靖, 陶永春, 胡经国. 外应力场下铁磁/反铁磁双层膜系统中的交换偏置. 物理学报, 2006, 55(6): 3032-3037. doi: 10.7498/aps.55.3032
    [16] 李锐鹏, 王 劼, 李红红, 郭玉献, 王 锋, 胡志伟. 软x射线磁性圆二色吸收谱研究铁单晶薄膜的面内磁各向异性. 物理学报, 2005, 54(8): 3851-3855. doi: 10.7498/aps.54.3851
    [17] 滕蛟, 蔡建旺, 熊小涛, 赖武彦, 朱逢吾. NiFe/FeMn双层膜交换偏置的形成及热稳定性研究. 物理学报, 2004, 53(1): 272-275. doi: 10.7498/aps.53.272
    [18] 杨慎东, 宁兆元, 黄峰, 程珊华, 叶超. a-C:F薄膜的热稳定性与光学带隙的关联. 物理学报, 2002, 51(6): 1321-1325. doi: 10.7498/aps.51.1321
    [19] 李明华, 于广华, 何珂, 朱逢吾, 赖武彦. 具有分隔层Bi的反铁磁/铁磁双层薄膜间的短程交换耦合. 物理学报, 2002, 51(12): 2854-2857. doi: 10.7498/aps.51.2854
    [20] 钟智勇, 兰中文, 张怀武, 刘颖力, 王豪才. 铁磁/非铁磁/铁磁层状薄膜的巨磁阻抗效应的计算. 物理学报, 2001, 50(8): 1610-1615. doi: 10.7498/aps.50.1610
计量
  • 文章访问数:  3321
  • PDF下载量:  1249
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-28
  • 修回日期:  2013-01-08
  • 刊出日期:  2013-05-05

BiFeO3/Ni81Fe19磁性双层膜中的交换偏置及其热稳定性研究

  • 1. 淮阴工学院江苏省介入医疗器械研究重点实验室, 淮安 223003;
  • 2. 西南科技大学材料科学与工程学院, 绵阳 621010
    基金项目: 国家自然科学基金(批准号:51175212)和江苏省自然科学基金(批准号:BK2012668)资助的课题.

摘要: 研究了磁场诱导生长的BiFeO3/Ni18Fe19磁性双层膜中 的交换偏置及其热稳定性. 结果表明: BiFeO3/Ni18Fe19双层膜中的交换偏置场Hex未表现出明显的磁练习效应. 在负饱和磁场等待过程中, BiFeO3/Ni18Fe19双层膜磁滞回线的前支和后支曲 线都随着在负饱和磁场中等待时间tsat的增加向正场方向偏移. 交换偏置场Hex的大小随着等待时间tsat的增加而减小, 矫顽力Hc基本不变. 交换偏置场Hex的大小随测量温度Tm的升高变化不明显, 表现出良好的热稳定性; 但矫顽力Hc随Tm的升高而显著减小. 良好的热稳定性应该来源于铁电性和反铁磁性间的共同耦合作用.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回